
19

Tree Construction using Singular Value
Decomposition

Nicholas Eriksson

We present a new, statistically consistent algorithm for phylogenetic tree con-

struction that uses the algebraic theory of statistical models (as developed in

Chapters 1 and 3). Our basic tool is Singular Value Decomposition (SVD)

from numerical linear algebra.

Starting with an alignment of n DNA sequences, we show that SVD allows us

to quickly decide whether a split of the taxa occurs in their phylogenetic tree,

assuming only that evolution follows a tree Markov model. Using this fact, we

have developed an algorithm to construct a phylogenetic tree by computing

only O(n2) SVDs.

We have implemented this algorithm using the SVDLIBC library (available

at http://tedlab.mit.edu/~dr/SVDLIBC/) and have done extensive testing

with simulated and real data. The algorithm is fast in practice on trees with

20–30 taxa.

We begin by describing the general Markov model and then show how to

flatten the joint probability distribution along a partition of the leaves in the

tree. We give rank conditions for the resulting matrix; most notably, we give a

set of new rank conditions that are satisfied by non-splits in the tree. Armed

with these rank conditions, we present the tree-building algorithm, using SVD

to calculate how close a matrix is to a certain rank. Finally, we give experimen-

tal results on the behavior of the algorithm with both simulated and real-life

(ENCODE) data.

19.1 The general Markov model

We assume that evolution follows a tree Markov model, as introduced in Sec-

tion 1.4, with evolution acting independently at different sites of the genome.

We do not assume that the transition matrices for the model are stochastic.

Furthermore, we do not assume the existence of a global rate matrix (as in

Section 4.5).

This model is called the general Markov model. It is a more general model

than any in the Felsenstein hierarchy (Figure 4.7). The main results in this

chapter therefore hold no matter what model in the Felsenstein hierarchy one

works with.

347

348 N. Eriksson

Under the general dogma that statistical models are algebraic varieties,

the polynomials (called “phylogenetic invariants”) defining the varieties are

of great interest. Phylogenetic invariants have been studied extensively since

[Lake, 1987, Cavender and Felsenstein, 1987]. Linear invariants for the Jukes–

Cantor model have been used to infer phylogenies on four and five taxa; see

[Sankoff and Blanchette, 2000]. Sturmfels and Sullivant finished the classifica-

tion of the invariants for group-based models [Sturmfels and Sullivant, 2005];

see Chapter 15 for an application of these invariants for constructing trees

on four taxa. Invariants for the general Markov model have been studied in

[Allman and Rhodes, 2003, Allman and Rhodes, 2004a].

The main problem with invariants is that there are exponentially many poly-

nomials in exponentially many variables to test on exponentially many trees.

Because of this, they are currently considered impractical by many and have

only been applied to small problems. However, we solve the problem of this

combinatorial explosion by only concentrating on invariants which are given

by rank conditions on certain matrices, called “flattenings”.

19.2 Flattenings and rank conditions

Recall from Chapters 2 and 17 that a split {A,B} in a tree is a partition of

the leaves obtained by removing an edge of the tree. We will say that {A,B}

is a partition of the set of leaves if it is not necessarily a split but merely a

disjoint partition of the set of leaves into two sets.

Throughout, all trees will be assumed to be binary with n leaves. We let

m denote the number of states in the alphabet Σ. Usually m = 4 and Σ =

{A,C,G, T} or m = 2 and Σ = {0, 1}. We will write the joint probabilities of

an observation on the leaves as pi1...in . That is, pi1...in is the probability that

leaf j is observed to be in state ij for all j ∈ {1, . . . , n}. We write P for the

entire probability distribution.

Although the descriptions of tree-based models in this book all deal with

rooted trees, we will mostly consider unrooted tree models, which are equiv-

alent to them for the general Markov model; see [Allman and Rhodes, 2004a]

for details on this technical point. Our tree-building algorithm constructs an

unrooted tree, additional methods would be required to find the root.

Definition 19.1 A flattening along a partition {A,B} is the m|A| by m|B|

matrix where the rows are indexed by the possible states for the leaves in A

and the columns are indexed by the possible states for the leaves in B. The

entries of this matrix are given by the joint probabilities of observing the given

pattern at the leaves. We write FlatA,B(P) for this matrix.

Example 19.2 (Flattening a partition on 4 taxa) Let T be a tree with

4 leaves and let m = 4, Σ = {A,C,G,T}. The partition {1, 3}, {2, 4} flattens

to the 16× 16 matrix Flat{1,3},{2,4}(P) where the rows are indexed by bases of

Tree Construction using Singular Value Decomposition 349

taxa 1 and 3 and the columns by bases of taxa 2 and 4:

Flat{1,3},{2,4}(P) =



















AA AC AG AT CA CC . . .

AA pAAAA pAAAC pAAAG pAAAT pACAA pACAC . . .

AC pAACA pAACC pAACG pAACT pACCA pACCC . . .

AG pAAGA pAAGC pAAGG pAAGT pACGA pACGC . . .

AT pAATA pAATC pAATG pAATT pACTA pACTC . . .

CA pCAAA pCAAC pCAAG pCAAT pCCAA pCCAC . . .
...

...
...

...
...

...
...

...



















.

Next we define a measure of how close a general partition of the leaves is

to being a split. If A is a subset of the leaves of T , we let TA be the subtree

induced by the leaves in A (in Chapter 18 this subtree is denoted by [A]). That

is, TA is the minimal set of edges needed to connect the leaves in A.

Definition 19.3 Suppose that {A,B} is a partition of [n]. The distance be-

tween the partition {A,B} and the nearest split, written e(A,B), is the number

of edges that occur in TA ∩ TB .

Notice that e(A,B) = 0 exactly when {A,B} is a split.

Consider TA ∩ TB as a subtree of TA. Color the nodes in TA ∩ TB red, the

nodes in TA \ (TA ∩ TB) blue. Say that a node is monochromatic if it and

all of its neighbors are of the same color. We let mono(A) be the number of

monochromatic red nodes. That is:

Definition 19.4 Define mono(A) as the number of nodes in TA ∩ TB that do

not have a node in TA \ (TA ∩ TB) as a neighbor.

See Figure 19.1 for an example of e(A,B) and mono(A).

Our main theorem ties together how close a partition is to being a split with

the rank of the flattening associated to that partition.

Theorem 19.5 Let {A,B} be a partition of [n], let T be a binary, unrooted

tree with leaves labeled by [n], and assume that the joint probability distribution

P comes from a Markov model on T with an alphabet with m letters. Then the

generic rank of the flattening FlatA,B(P) is given by

min
(

me(A,B)+1−mono(A),me(A,B)+1−mono(B),m|A|,m|B|
)

. (19.1)

Proof We claim that FlatA,B(P) can be thought of as the joint distribution for

a simple graphical model. Pick all the nodes that are shared by the induced

subtrees for A and B: call this set R. If R is empty, then {A,B} is a split; in

that case let R be one of the vertices of the edge separating A and B. Notice

that |R| = e(A,B) + 1. Think of these vertices as a single hidden random

variable which we will also call R with m|R| = me(A,B)+1 states. Group the

states of the nodes in A together into one m|A|-state observed random variable;

350 N. Eriksson

��

����

��

��

A

R

B

Fig. 19.1. If A is given by the 8 dashed leaves and B by the 7 solid leaves, then
e(A, B) = 8 (shown in bold) and FlatA,B(P) is the joint distribution for a 3-state
graphical model where the root R has m9 states and the descendents A and B have
m8 and m7 states, respectively. Here mono(B) = 4 (indicated by the dots), so the
m9 × m8 matrix MA has rank m9−4 = m5, which is the rank of FlatA,B(P).

similarly the nodes in B are grouped into a m|B|-state random variable. Then

create the graphical model with one hidden m|R|-state random variable and

two descendent observed variables with m|A| and m|B| states. Notice that

FlatA,B(P) is the joint distribution for this model. See Figure 19.1 for an

example.

Furthermore, the distribution for this simplified model factors as

FlatA,B(P) = MT
A diag(π(R))MB (19.2)

where π(R) is the distribution of R and MA and MB are the m|R| × m|A|

and m|R| × m|B| transition matrices. That is, the (i, j)th entry of MA is the

probability of transitioning from state i at the root R to state j at A.

To say the tree distribution factors as (19.2) just means that

Prob(A = i, B = j) =
∑

k

Prob(R = k)Prob(A = i | R = k)Prob(B = j | R = k).

Notice that all of the terms in this expression can be written as polynomi-

als in the edge parameters (after choosing a rooting). Therefore the rank of

FlatA,B(P) is at most mmin(|R|,|A|,|B|).

However, the matrices in this factorization do not necessarily have full rank.

For example, if one of the nodes in R has only neighbors that are also in R,

then the m|R| × m|A| transition matrices from R to A have many rows that

are the same, since the transition from a state of R to a state of A does not

Tree Construction using Singular Value Decomposition 351

depend on the value of this one node. More generally, if a node of R has no

neighbors in TA \ (TA ∩ TB), then the entries of the transition matrix MA do

not depend on the value of this node. But the entries do depend on the values

of all other nodes of R (that is, those with neighbors in TA \ (TA ∩ TB)). So

R really behaves like a model with m|R|−mono(A) states on the transition to A

and m|R|−mono(B) states for the transition to B. There are enough parameters

so that after canceling out these equal rows, all other rows are linearly inde-

pendent. Therefore, the rank of MA is min
(

m|R|−mono(A),m|A|
)

(and similarly

for MB), so the theorem follows.

This theorem gives rise to a well-known corollary upon noticing that if

{A,B} is a split, then e(A,B) = 0 (see [Allman and Rhodes, 2004a], for ex-

ample).

Corollary 19.6 If {A,B} is a split in the tree, the generic rank of FlatA,B(P)

is m.

A partial converse of Corollary 19.6 will be used later.

Corollary 19.7 If {A,B} is not a split in the tree, and we have |A|, |B| ≥ 2

then the generic rank of FlatA,B(P) is at least m2.

Proof Since we have |A|, |B| ≥ 2, we must show that the two other exponents

in (19.1) are at least 2. That is, we have to show that e(A,B)+1−mono(A) ≥ 2

(the case for B is symmetric). This term counts the number of nodes in TA∩TB

that are directly connected to a part of TA outside of TA ∩ TB . Since {A,B}

is not a split, we know that |TA ∩ TB | = e(A,B) + 1 ≥ 2. Consider TA ∩ TB

as a subtree with at least 2 nodes of TA. The only way for all but one of these

nodes to be isolated from the rest of the tree is to have the two consist of a leaf

and its parent. However, this is impossible since {A,B} is a disjoint partition

of the set of leaves, so TA ∩ TB contains no leaves.

Example 19.8 In Example 19.2, the 16×16 matrix Flat{1,3},{2,4}(P) has rank

4 if the split {{1, 3}, {2, 4}} occurs in the tree, otherwise, it has rank 16.

In fact, if m = 2, it has recently been shown [Allman and Rhodes, 2004b]

that the rank conditions in Corollary 19.6 generate the ideal of invariants for

the general Markov model. However, they do not suffice if m = 4, since in that

case a polynomial of degree 9 lies in the ideal of invariants (see [Strassen, 1983,

Garcia et al., 2004]) but this polynomial is not generated by the degree 5 rank

conditions (see [Landsberg and Manivel, 2004]).

19.3 Singular Value Decomposition

Singular Value Decomposition provides a method to compute the distance

between a matrix and the nearest rank k matrix. In this section, we briefly

introduce the basic properties of SVD for real matrices. See [Demmel, 1997]

for a thorough treatment.

352 N. Eriksson

Definition 19.9 A singular value decomposition of a m × n matrix A (with

m ≥ n) is a factorization A = UΣV T where U is m×n and satisfies UTU = I,

V is n × n and satisfies V TV = I and Σ = diag(σ1, σ2, . . . , σn), where σ1 ≥

σ2 ≥ · · · ≥ σn ≥ 0 are called the singular values of A.

Definition 19.10 Let aij be the (i, j)th entry of A. The Frobenius norm,

written ‖A‖F, is the root-sum-of-squares norm on R
m·n. That is,

‖A‖F =
√

∑

a2
ij.

The L2 norm (or operator norm), written ‖A‖2, is given by

‖A‖2 = maxx∈R
n

x 6=0

{

‖Ax‖

‖x‖

}

,

where ‖x‖ is the usual root-sum-of-squares vector norm.

The following is Theorem 3.3 of [Demmel, 1997]:

Theorem 19.11 The distance from A to the nearest rank k matrix is

min
Rank(B)=k

‖A − B‖F =

√

√

√

√

m
∑

i=k+1

σ2
i

in the Frobenius norm and

min
Rank(B)=k

‖A − B‖2 = σk+1

in the L2 norm.

One way of computing the singular values is to compute the eigenvalues of

ATA; the singular values are the square roots of these eigenvalues. Therefore,

general techniques for solving the real symmetric eigenvalue problem can be

used to compute the SVD. These various methods, both iterative and direct,

are implemented by many software packages for either sparse or general ma-

trices. We will discuss the computational issues with SVD after we describe

how to use it to construct phylogenetic trees.

19.4 Tree-construction algorithm

Now that we know how to tell how close a matrix is to being of a certain

rank, we can test whether a given split comes from the underlying tree or not

by using the SVD to tell how close a flattening matrix is to being rank m.

However, since there are exponentially many possible splits, we must carefully

search through this space. Following a suggestion by S. Snir, we do this by

building the tree bottom up, at each step joining cherries together, in a method

reminiscent of neighbor-joining (Algorithm 2.41).

It is an interesting open question whether the additional information in The-

orem 19.5 about non-splits that are almost splits can be harnessed to produce

an improved algorithm.

Tree Construction using Singular Value Decomposition 353

Algorithm 19.12 (Tree construction with SVD)

Input: A multiple alignment of genomic data from n species, from the alpha-

bet Σ with m states.

Ouptut: An unrooted binary tree with n leaves labeled by the species.

Initialization: Compute empirical probabilities pi1...in . That is, count oc-

currences of each possible column of the alignment, ignoring columns with

characters not in Σ. Store the results in a sparse format.

Loop: For k from n down to 4, perform the following steps.

For each of the
(

k
2

)

pairs of species compute the SVD for the split {{pair},

{other k − 2 species}}. Pick the pair whose flattening is closest to rank m

according to the Frobenius norm and join this pair together in the tree. That

is, consider this pair as a single element when picking pairs at the next step.

Proposition 19.13 Algorithm 19.12 needs the computation of at most (n −

1)2 − 3 SVDs.

Proof At the first step, we compute an SVD
(

n
2

)

times. At each subsequent

step, we only need to compute those splits involving the pair that we just joined

together. Thus we compute (n− 2) + (n− 3) + · · ·+ 3 =
(

n−1
2

)

− 3 total SVDs

after the first step for
(

n
2

)

+
(

n−1
2

)

= (n − 1)2 − 3 SVD computations in total.

In fact, not all of these are even necessary; some steps will involve computing

both partitions {A,B} and {B,A}, in which case one can be ignored.

The flattenings are very large (size m|A| ×m|B|), yet they are typically very

sparse. If an alignment is of length L, at most L entries of the flattening,

typically many fewer, are non-zero. Generally, computing all singular values

of an a× b matrix takes O(a2b + ab2) time. However, Lanczos iterative meth-

ods (cf. Chapter 7 of [Demmel, 1997]) allow singular values to be computed

quickly individually, starting with the largest. Furthermore, sparse matrix

techniques allow us to take advantage of this structure without having to deal

with matrices of exponential size.

Since we will be comparing the SVD from different sized splits, we need

to compute distances in the Frobenius norm, which does not change as the

dimensions of the matrices change (as long as the number of entries is constant).

This means that we should compute all singular values; however that is difficult

computationally. But in practice, the singular values typically decrease very

quickly, so it suffices to compute only the largest singular values to estimate

the Frobenius norm.

By exploiting the sparsity and only computing singular values until they

become sufficiently small, we find that we are able to very quickly compute the

SVD for flattenings coming from trees with at most 31 leaves with binary data

(m = 2) and up to 15 leaves with DNA data (m = 4). This limitation is due

to limits on the size of array indices in SVDLIBC and can probably be exceeded.

Furthermore, there are good approximation algorithms for SVD that could

make very large problems practical [Frieze et al., 1998].

354 N. Eriksson

b

b

b1

b

b2

b3

b

b4

b

b5

b6

Fig. 19.2. The 6-taxa tree constructed in Example 19.15.

Theorem 19.14 Algorithm 19.12 is statistically consistent. That is, as the

probability distribution converges to a distribution that comes from the general

Markov model on a binary tree T , the probability that Algorithm 19.12 outputs

T goes to 1.

Proof We must show that the algorithm picks a correct split at each step; that

is, as the empirical distribution approaches the true distribution, the prob-

ability of choosing a bad split goes to zero. By Corollary 19.6, we see that

a true split will lead to a flattening that approaches a rank m matrix, while

Corollary 19.7 shows that other partitions will approach a matrix of rank at

least m2 (except for partitions where one set contains only one element; how-

ever, these are never considered in the algorithm). Therefore, as the empirical

distribution approaches the true one, the distance of a split from rank m will

go to zero while the distance from rank m of a non-split will not.

Example 19.15 We begin with an alignment of DNA data of length 1000

for 6 species, labeled 1, . . . , 6, simulated from the tree in Figure 19.2 with all

branch lengths equal to 0.1. For the first step, we look at all pairs of the

6 species. The score column is the distance in the Frobenius norm from the

flattening to the nearest rank 4 matrix:

Partition Score

2 3 | 1 4 5 6 5.8374

5 6 | 1 2 3 4 6.5292

1 2 | 3 4 5 6 20.4385

1 3 | 2 4 5 6 20.5153

4 6 | 1 2 3 5 23.1477

4 5 | 1 2 3 6 23.3001

1 4 | 2 3 5 6 44.9313

3 4 | 1 2 5 6 52.1283

2 4 | 1 3 5 6 52.6763

1 6 | 2 3 4 5 52.9438

1 5 | 2 3 4 6 53.1727

Tree Construction using Singular Value Decomposition 355

3 6 | 1 2 4 5 59.5006

3 5 | 1 2 4 6 59.7909

2 6 | 1 3 4 5 59.9546

2 5 | 1 3 4 6 60.3253

picked split 1 4 5 6 | 2 3

tree is 1 4 5 6 (2,3)

After the first step, we see that the split {{2, 3}, {1, 4, 5, 6}} is the best, so

we join nodes 2 and 3 together in the tree and continue. Notice that the scores

of the partitions roughly correspond to how close they are to being splits:

Partition Score

1 2 3 | 4 5 6 5.8534

5 6 | 1 2 3 4 6.5292

4 6 | 1 2 3 5 23.1477

4 5 | 1 2 3 6 23.3001

1 4 | 2 3 5 6 44.9313

2 3 4 | 1 5 6 45.1427

1 6 | 2 3 4 5 52.9438

2 3 6 | 1 4 5 53.0300

1 5 | 2 3 4 6 53.1727

2 3 5 | 1 4 6 53.3838

picked split 1 2 3 | 4 5 6

tree is 4 5 6 (1,(2,3))

After the second step, we join node 1 to the {2, 3} cherry and continue:

Partition Score

5 6 | 1 2 3 4 6.5292

4 6 | 1 2 3 5 23.1477

4 5 | 1 2 3 6 23.3001

picked split 1 2 3 4 | 5 6

tree is 4 (1,(2,3)) (5,6)

Final tree is (4,(1,(2,3)),(5,6))

We have found the last cherry, leaving us with 3 remaining groups which we

join together to form an unrooted tree.

19.5 Performance analysis

19.5.1 Building trees with simulated data

The idea of simulation is that we first pick a tree and simulate a model on

that tree to obtain aligned sequence data. Then we build a tree using Algo-

rithm 19.12 and other methods from that data and compare the answers to

the original tree.

We used the program seq-gen [Rambaut and Grassly, 1997] to simulate

data of various lengths for the tree in Figure 19.3 with the two sets of branch

356 N. Eriksson

b

b

a/2

b

a

b1
b

b2
b

b

a

b3
b

b4
b

b

a/2

b

a

b5
b

b6
b

b

a

b7
b

b8
b

Fig. 19.3. The 8-taxa tree used for simulation with (a, b) = (0.01, 0.07) and
(0.02, 0.19).

lengths given in Figure 19.3. This tree was chosen as a particularly difficult

tree [Strimmer and von Haeseler, 1996, Ota and Li, 2000].

We simulated DNA data under the general reversible model (the most gen-

eral model supported by seq-gen). Random numbers uniformly distributed

between 1 and 2 were chosen on each run for the six rate matrix parameters

(see Figure 4.7). The root frequencies were all set to 1/4.

Next, the data was collapsed to binary data (that is, A and G were identified,

similarly C and T). We used binary data instead of DNA data because of

numerical instability with SVD using the much larger matrices from the DNA

data. It should be noted that Algorithm 19.12 performed better on binary

data than on DNA data. This may be due to the instability, but it may also

be because the rank conditions define the entire ideal for binary data.

We ran all tests using our Algorithm 19.12 as well as two algorithms from

the PHYLIP package (see Section 2.5): neighbor-joining (i.e., Algorithm 2.41),

and a maximum likelihood algorithm (dnaml). We used Jukes–Cantor distance

estimation for neighbor-joining and the default settings for dnaml. All three

algorithms took approximately the same amount of time, except for dnaml,

which slowed down considerably for long sequences.

Figures 19.4 and 19.5 show the results of the simulations. Each algorithm

was run 1000 times for each tree and sequence length. While SVD performed

slightly worse than the others, it showed very comparable behavior. It should

be noted that SVD constructs trees according to a much more general model

than the other two methods, so it should be expected to have a higher variance.

19.5.2 Building trees with real data

For data, we use the October 2004 freeze of the ENCODE alignments. For

detailed information on these, see Section 4.3, Chapters 21 and 22.

As in Chapter 21, we restricted our attention to 8 species: human, chimp,

Tree Construction using Singular Value Decomposition 357

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

P
er

ce
nt

 o
f t

re
es

 r
ec

on
st

ru
ct

ed

Sequence Length

a = 0.01, b = 0.07

SVD
dnaml

NJ

Fig. 19.4. Percentage of trees reconstructed correctly (for the 8-taxa tree with branch
lengths (a, b) = (0.01, 0.07)) using our SVD algorithm and two PHYLIP packages.

galago, mouse, rat, cow, dog, and chicken. We processed each of the 44 EN-

CODE regions to obtain 3 data sets. First, for each region, all of the ungapped

columns were chosen. Second, within each region, all ungapped columns that

corresponded to RefSeq annotated human genes were chosen. Third, we re-

stricted even further to only the human exons within the genes. Bins without

all 8 species and bins with less than 100 ungapped positions in the desired class

were removed from consideration. This left us with 33 regions for the entire

alignment, and 28 for both the gene and exon regions, of lengths between 302

and over 100000 base pairs. See Chapter 21 for a more thorough discussion of

these data sets.

As is discussed in Section 21.4, tree construction methods that use genomic

data usually misplace the rodents on the tree. The reasons for this are not

entirely known, but it could be because tree construction methods generally

assume the existence of a global rate matrix (cf. Section 4.5) for all the species.

However, rat and mouse have mutated faster than the other species. Our

method does not assume anything about the rate matrix and thus is promising

for situations where additional assumptions beyond the Markov process of

evolution at independent sites are not feasible.

In fact, Table 19.1 shows that our algorithm performs better than dnaml

on the ENCODE data sets. Note that the measure used is the symmetric

distance on trees, which counts the number of splits present in one tree that

aren’t present in the other.

While neither algorithm constructed the correct tree a majority of the time,

358 N. Eriksson

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000

P
er

ce
nt

 o
f t

re
es

 r
ec

on
st

ru
ct

ed

Sequence Length

a = 0.02, b = 0.19

SVD
dnaml

NJ

Fig. 19.5. Percentage of trees reconstructed correctly (for the 8-taxa tree with branch
lengths (a, b) = (0.02, 0.019)) using our SVD algorithm and two PHYLIP packages.

SVD dnaml

Ave. distance % correct Ave. distance % correct
All 2.06 5.8 3.29 2.9

Gene 1.93 10.3 3.21 0.0
Exon 2.43 21.4 3.0 3.5

Table 19.1. Comparison of the SVD algorithm and dnaml on data from the

ENCODE project. Distance between trees is given by the symmetric distance,

% correct gives the percentage of the regions which had the correct tree

reconstructed.

the SVD algorithm came much closer on average and constructed the correct

tree much more often than dnaml, which almost never did (see Figure 21.4 for

the correct tree and a common mistake).

