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ABSTRACT
We consider the model of phylogenetic trees in which every
node of the tree is an observed, binary random variable and
the transition probabilities are given by the same matrix on
each edge of the tree. The ideal of invariants of this model
is a toric ideal in C[pi1...in ]. We are able to compute the
Gröbner basis and minimal generating set for this ideal for
trees with up to 11 nodes. These are the first non-trivial
Gröbner bases calculations in 211 = 2048 indeterminates.
We conjecture that there is a quadratic Gröbner basis for
binary trees, but that generators of degree n are required
for some trees with n nodes. The polytopes associated with
these toric ideals display interesting finiteness properties.
We describe the polytope for an infinite family of binary
trees and conjecture (based on extensive computations) that
there is a universal bound on the number of vertices of the
polytope of a binary tree.

Categories and Subject Descriptors
G.2.3 [Discrete Mathematics]: Applications

General Terms
Theory, Experimentation

Keywords
Phylogenetic invariants, parametric inference, toric ideals,
Gröbner bases

1. INTRODUCTION
A phylogenetic tree is a rooted tree T on n nodes with a κ-

ary random variable Xi associated to every node. Write ρ(v)
for the parent of node v. Then the transition probabilities
between ρ(v) and v are given by a κ by κ matrix A(v) for
every non-root node of T .

In an application, κ might encode the four nucleic acids
that make up DNA, the two families of nucleic acids, or the
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twenty amino acids. The transition matrices are generally
picked from some specific family such as the Jukes-Cantor
[11], Kimura [12], or general Markov models [1].

In this paper we consider the homogeneous Markov model
where all A(v) are equal, all nodes are binary (κ = 2) and
observable, and the root has uniform distribution. We write

A(v) = A =

„

a00 a01

a10 a11

«

, where we relax the condition that

the rows of A sum to 1.
The probability of observing i at a node v is computed

from the parent of v by

P (Xv = i) = a0iP (Xρ(v) = 0) + a1iP (Xρ(v) = 1).

We are interested in the algebraic relations satisfied by the
joint distribution

pi1i2...in := P (X1 = i1, . . . , Xn = in).

Writing the joint distribution in terms of the model param-
eters a00, a01, a10, a11, we have

pi1i2...in =
n

Y

j=2

aiρ(j)ij
(1)

where the nodes of the tree are labeled 1 to n starting with
the root. That is, the probability of observing a certain la-
beling of the tree is the product of the aij that correspond
to the transitions on all edges of the tree. The indetermi-
nates aij parameterize a toric variety of dimension 4 in R

2n

.
We let IT be the corresponding toric ideal, called the ideal
of phylogenetic invariants. In the notation of [13], the toric
ideal IT is specified by the 4 by 2n configuration AT , where
column (i1, . . . , in) consists of the exponent vector of the aij

in (1). We order the rows (a00, a01, a10, a11). Let PT be the
convex hull of the columns of AT .

We are interested in two questions from [10]. First, which
relations on the joint probabilities pi1...in does the model
imply? This problem is solved by giving generators of the
ideal of invariants IT .

In Section 2, we study the generators of this ideal. Our
main accomplishment is the computation of Gröbner and
Markov bases for trees with 11 nodes. These are compu-
tations in 2048 indeterminates, which we believe to be the
largest number of indeterminates ever in a Gröbner basis
calculation. We also calculate generating sets for all trees
on at most 9 nodes. Based on this evidence, we conjecture
that if T is binary, then the ideal IT has a quadratic gener-
ating set. However, our calculations suggest that relations
of degree n are necessary to generate IT for certain trees
with n nodes.



Our second goal is to determine, given a labeling of the
tree T , if we can identify parameters aij such that the la-
beling is the most likely among all labelings. This problem
is solved by computing the normal fan of the toric variety
in the sense of [4].

In Section 3, we study this normal fan and the polytope
PT . Our main result, Theorem 1, is an explicit description
of the polytope PT for an infinite family of binary trees. For
this family, PT always has 8 vertices and 6 facets which we
characterize. We also present extensive calculations of PT

for various trees and conjecture that there is a bound on the
number of vertices of PT as T ranges over all binary trees.

The invariants vanish for a given distribution (pi1...in)
essentially when that distribution comes from our model.
Thus the knowledge of the generators of this ideal is po-
tentially very useful for fitting biological sequence data to a
phylogenetic tree, as first noted by Cavender and Felsenstein
[2]. While there has been much progress towards finding the
ideal of invariants for other phylogenetic models (see [1], [11],
[12]), the homogeneous model is particularly attractive be-
cause the low number of parameters makes it possible to
compute non-trivial examples.

Hopefully we can use the homogeneous model to approx-
imate in some sense the general model, perhaps by subdi-
viding edges of the tree. However, it should be noted that
since all nodes are observed, the invariant calculations will
not themselves be useful for phylogenetics. We are currently
investigating invariants for the homogeneous Markov model
with hidden nodes.

Example 1. Let T be a path with 3 nodes. Then

AT =

0

B

B

@

2 1 0 0 1 0 0 0
0 1 1 1 0 1 0 0
0 0 1 0 1 1 1 0
0 0 0 1 0 0 1 2

1

C

C

A

,

the polytope PT has 7 vertices and 6 facets, and the toric
ideal of the path of length 3 is generated by 6 binomials

IT = 〈p101 − p010, p001p100 − p000p010,

p011p100 − p001p110, p011p110 − p010p111,

p2
001p111 − p000p

2
011, p

2
100p111 − p000p

2
110〉.

2. TORIC IDEALS
The toric ideals IT are homogeneous, since all monomials

in (1) have the same degree n− 1. Thus they define projec-
tive toric varieties YT . Algebraic geometers usually require a
toric variety to be normal, but the reader should be warned
that the toric varieties discussed in this paper are generally
not normal.

Recall that a projective toric variety given by a configura-
tion A = (a1, . . . ,ak) is covered by the affine toric varieties
given by A − ai. An affine toric variety defined by a con-
figuration B is said to be smooth if the semigroup NB is
isomorphic to N

r for some r [14, Lemma 2.2].

Proposition 1. The projective toric variety YT of a bi-
nary tree T is not smooth.

Proof. Recall that the columns of the configuration AT

are indexed by 0/1-labelings of the tree T . Look at the affine
chart IA−a0...0 , where a0...0 corresponds to the all zero tree.
On this chart, write ãi = ai−a0...0. The cone R≥0(A−a0...0)
is simplicial, with extreme rays coming from the following

labelings of the tree: let 10 . . . 0 be the tree with a 1 at the
root and zeros everywhere else, 0 . . . 01 be the tree with a 1
at a single leaf and zeros everywhere else, and 1 . . . 1 be the
tree with all ones. That is, three generators of the semigroup
are

ã10...0 = (n − 3, 0, 2, 0) − a0...0 = (−2, 0, 2, 0)

ã0...01 = (n − 2, 1, 0, 0) − a0...0 = (−1, 1, 0, 0)

ã1...1 = (0, 0, 0, n − 1) − a0...0 = (−n + 1, 0, 0, n − 1)

Now it is easy to check that, for example, the point ã∗ =
(−n+1, 0, 2, n−3) does not lie in the semigroup generated by
the three previous elements. Furthermore, this point comes
from the labeling of a tree (the tree with all labels one except
for 2 sibling leaves, their parent, and a single other leaf who
are labeled zero). Thus it lies in the configuration A−a0...0,
so the semigroup requires at least 4 generators. Therefore,
N(A−a0...0) is not isomorphic to N

3 and so the toric variety
YT is not smooth.

We are primarily interested in the generators of the ideals
IT . Knowledge of the generators would allow us to easily
compute whether given data came from the homogeneous
Markov model from some specific phylogenetic tree.

Using 4ti2 [6], Gröbner and Markov bases for the ideal
IT were computed for all trees with at most 9 nodes as well
as selected trees with 10 and 11 nodes. This took about 6
weeks of computer time in total on a 2GHz computer. The
computations in 2048 variables (trees with 11 nodes) each
took as long as a week and required over 2 GB of memory.

Details about the Markov bases for all binary trees with
at most 11 nodes are shown in Table 1. These computations
lead us to make the following conjectures.

Conjecture 1. The toric ideal corresponding to a bi-
nary tree is generated in degree 2. More generally, if every
non-leaf node of the tree has the same number of children d
(for d ≥ 2), the toric ideal is generated in degree 2.

Conjecture 2. There exists a quadratic Gröbner basis
for the toric ideal of a binary tree.

Using the Gröbner Walk [3] implementation in magma, we
have computed thousands of Gröbner bases for random term
orders for the smallest binary trees. It doesn’t seem to be
possible to compute the entire Gröbner fan for these ex-
amples with CaTS [7], but the random computations have
yielded some information: Conjecture 2 is true for the bi-
nary tree with 5 nodes, in fact, there are at least 4 distinct
quadratic Gröbner bases for this tree. Analysis of these
bases lends some optimism towards Conjecture 2. However,
for the binary trees on 7 nodes, computation of over 1000
Gröbner bases did not find a quadratic basis. The best ba-
sis found contained quartics and some bases even contained
relations of degree 29.

Another nice family of toric ideals is given by IT for T a
path of length n. Table 2presents data for Markov bases of
paths that leads us to conjecture that this family also has
well behaved ideals.

Conjecture 3. The toric ideal corresponding to a path
is generated in degree 3, with 2n − 4 generators of degree 3
needed.

Unfortunately, the toric ideal of a general tree doesn’t
seem to have such simple structure. For n ≤ 9, the trees



tree Degree #Minimal Max degree
of IT Generators of generator

4 4 2

28 79 2

92 441 2

96 561 2

210 2141 2

220 2068 2

210 2266 2

412 7121 2

404 7131 2

400 7137 2

412 7551 2

412 7551 2

404 7561 2

Table 1: Degree of IT , number of minimal genera-

tors, and maximum degree of the generators

# of Degree #Minimal Max Number
nodes of IT Generators degree of deg 3
3 6 6 3 2
4 19 32 3 4
5 36 102 3 6
6 61 259 3 8
7 90 540 3 10
8 127 1041 3 12
9 168 1842 3 14
10 217 3170 3 16
11 270 5286 3 18

Table 2: Degree of IT , size of Markov basis, maxi-

mum degree of a minimal generator, and number of

degree 3 generators for paths

with highest degree minimal generators are those of the form

n−2 . These trees require generators of degree n.

3. POLYTOPES
In this section, we are interested in the following problem.

Given any observation (i1, . . . , in) of the tree, which matrices
A = (aij) make pi1...in maximal among the coordinates of
the distribution p?

To solve this problem, transform to logarithmic coordi-
nates xij = − log(aij). Then the condition that pi1...in >
pl1...ln for all (l1, . . . ln) ∈ {0, 1}n is translated into the the
linear system of inequalities

xi1i2 + · · · + xiρ(n)in > xl1l2 + · · · + xlρ(n)ln

for all (l1, . . . ln) ∈ {0, 1}n. The set of solutions to these in-
equalities is a polyhedral cone. For most values of i1, . . . , in,
this cone will be empty. Those sequences i1, . . . , in for which
the cone is maximal are called Viterbi sequences. The collec-
tion of the cones, as (i1, . . . , in) varies, is the normal fan of
the polytope PT , where PT is the convex hull of the columns
of AT .

Notice that PT is a polytope in R
4. However, since all

the monomials in (1) are of degree n − 1, we see that this
polytope is actually contained in n−1 times the unit simplex
in R

4. Thus, PT is actually a 3 dimensional polytope. We
call PT the Viterbi polytope.

The polytopes PT show remarkable finiteness properties
as T varies. Since PT is defined as the convex hull of 2n

vectors, it would seem that it could have arbitrarily bad
structure. However, as it is contained in n − 1 times the
unit simplex, it can be shown that there are at most O(n1.5)
integral points in PT .

Example 2. Eric Kuo has shown [8] that if T is a path
with n nodes, then PT has only two combinatorial types for
n > 3, depending only on the parity of n. The polytope
for the path with 7 nodes is shown in Figure 1. Think of
this picture as roughly a tetrahedron with the vertex cor-
responding to all 0 → 1 transitions and the vertex with all
1 → 0 transitions both sliced off. These two inequalities
come from the fact that for a path, the number of 0 → 1
and the number of 1 → 0 transitions can differ by at most
one.

Two facts from Example 2 are important to remember.
First, the structure of the polytope is related more to the
topology of the tree than the size of the tree. Second, there
is a distinction between even and odd length paths. We call
a binary tree completely odd if the tree has all leaves at an

odd distance from the root. For example, the tree is
completely odd.

Theorem 1. Let T be a completely odd binary tree with
more than three nodes. The associated polytope PT always
has the same combinatorial type with 8 vertices and 6 facets
(see Figure 2).

Proof. First, we derive six inequalities that are satis-
fied by any binary tree, deriving a “universal” polytope for
binary trees. Then we show that a completely odd binary
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Figure 1: PT for T a path with 7 nodes, after pro-

jecting onto the first three coordinates (x00, x01, x10).

tree has labelings that give us all vertices of the “universal”
polytope.

Thinking of the polytope space as the log space of the pa-
rameters aij , we write R

4 with coordinates b00, b01, b10, b11.
Since PT lies in n− 1 times the unit simplex in R

4, we have
b00 + b01 + b10 + b11 = n − 1 and the 4 inequalities bij ≥ 0.
We claim that any binary tree T satisfies two additional
inequalities

b00 − b01

2
+ b10 ≤

n + 1

2
, (2)

b11 − b10

2
+ b01 ≤

n + 1

2
. (3)

We prove (2), the second inequality follows by interchanging
1 and 0.

Fix a labeling of the binary tree. We claim that the left
hand side of (2) counts the net number of zeros that are
“created” while moving down the tree, that is, it counts the
number of leaves that are zero minus one if the root is labeled
zero. Pick a non-leaf of the tree which is labeled “0”. It has
two children. If both are “0”, then this node contributes 2
to b00−b01. If both are “1”, then this node contributes -2 to
b00 − b01. If one is “0” and one is “1”, then the node doesn’t
contribute. We think of a “0” node with two “0” children
as having created a new zero and a “0” node with two “1”
children as having deleted a zero. Therefore we see that the
term (b00 − b01)/2 counts the net number of zeros created as
children of “0” nodes. Similarly, if a non-leaf is labeled “1”,
then its contribution to b10 counts the number of new zeros
in the children.

Since there are n+1
2

leaves in a binary tree, there can be

at most n+1
2

zeros created, so (2) holds. Notice that the
labelings that lie on this facet are exactly those with a one
at the root and all zeros at the leaves.

These six inequalities and the equality b00 + b01 + b10 +
b11 = n − 1 define a three dimensional polytope in R

4. It is
straightforward to compute that there are eight vertices of

Number Number of Min Max Ave
of nodes binary trees vertices vertices vertices
3 1 4 4 4
5 1 7 7 7
7 2 8 10 9
9 3 8 13 11.33
11 6 10 14 11.66
13 11 11 13 11.91
15 23 8 16 14.35
17 46 12 17 13.82
19 98 10 20 14.65
21 207 8 19 14.8
23 451 10 20 15.6

Table 3: Minimum, maximum and average number

of vertices of PT over all binary trees with at most

23 nodes

this polytope:

(n − 1, 0, 0, 0), (n − 3, 0, 2, 0)
„

n − 3

2
,
n + 1

2
, 0, 0

«

,

„

0,
2n

3
,
n − 3

3
, 0

«

„

0,
n − 3

3
,
2n

3
, 0

«

,

„

0, 0,
n + 1

2
,
n − 3

2

«

(0, 2, 0, n − 3), (0, 0, 0, n − 1)

Six of these vertices occur in any binary tree: a tree with
all zeros gives the (n − 1, 0, 0, 0) vertex, a tree with a one
at the root and zeros elsewhere gives (n − 3, 0, 2, 0), and
a tree with ones at the leaves and zeros elsewhere gives
(n−3

2
, n+1

2
, 0, 0). Interchanging 1 and 0 gives three more ver-

tices. However, the remaining two vertices aren’t obtained
by all binary trees.

The vertex (0, n−3
3

, 2n
3

, 0) lies on the facet defined by (2),
so we know it must have a one at the root, all zeros at the
leaves, and the labels must alternate going down the tree
since there are no zero to zero or one to one transitions. This
means that this vertex is representable by a labeled tree if
and only if the tree has all leaves at an odd depth from the
root. Notice that this implies that n must be divisible by 3
for the tree to be completely odd. Finally, if n > 3 is odd
and divisible by 3, then n ≥ 9 and one checks that the eight
vertices are distinct.

See Figure 2 for a picture of the polytope and a Schlegel
diagram with descriptions of the labelings on the facets and
at the vertices.

In the case where T is binary but not completely odd,
the polytope shares 6 vertices with this universal polytope,
but the remaining 2 vertices are either not integral or not
realizable. However, the polytope still shares much of the
boundary with the universal polytope, so it is perhaps re-
alistic to expect that the polytope for a general binary tree
behaves well. Table 3 shows data from computations for all
binary trees with at most 23 nodes. The maximum number
of vertices of PT appears to grow very slowly with the size
of the tree.

Although binary trees seem to generally have polytopes
with few vertices, arbitrary trees are not so nice. For exam-
ple, Figure 3 shows a tree with 15 nodes that has a polytope
with 34 vertices.

Table 4 shows data for all trees on at most 15 nodes.
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Figure 2: The polytope of the completely odd binary tree and a Schlegel diagram of this polytope with facets

and vertices labeled.

Figure 3: A tree T with 15 nodes for which PT has

34 vertices, 58 edges, and 26 faces.

It appears that the maximum number of vertices for the
polytope of an arbitrary tree of size n grows approximately
as 2n. Notice that the tree with all leaves at depth 1 has
PT a tetrahedron, giving the unique minimum number, 4,
of vertices for all trees.

Conjecture 4. There is a bound on the number of ver-
tices of PT , where T ranges over all binary trees. However,
for an arbitrary tree, the number of vertices of PT is un-
bounded.

We conclude with a description of an algorithm to quickly
computes PT . Notice that the naive method involves tak-
ing the convex hull of 2n points, but this can certainly be
improved, since there are many duplicates. The polytope
propagation algorithm of [9] can be used to calculate PT in
polynomial time in the number of nodes. This powerful al-
gorithm can be used the perform parametric inference for
many statistical models of interest to computational biolo-
gists. In our case, the algorithm depends on the observation
that PT can be rewritten roughly as the Minkowski sum of

Number Number of Min Max Ave
of nodes trees vertices vertices vertices
3 2 4 7 5.5
4 4 4 8 7
5 9 4 11 8
6 20 4 14 9.7
7 48 4 15 10.75
8 115 4 20 12.59
9 286 4 21 13.67
10 719 4 22 15.42
11 1842 4 25 16.60
12 4766 4 28 18.3
13 12486 4 31 19.5
14 32973 4 32 19.75
15 87811 4 34 22.6

Table 4: Minimum, maximum and average number

of vertices of PT over all trees with at most 15 nodes

PT1 and PT2 , where T1 and T2 are the left and right sub-
trees of the root (after splitting into 8 subcases depending
on the labels of the root and its children). This can be ap-
plied recursively down the tree to give a polynomial time
algorithm.
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[6] R. Hemmecke and R. Hemmecke. 4ti2 version
1.1—computation of Hilbert bases, Graver bases, toric
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