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Abstract

Algebraic combinatorics for computational biology

by

Nicholas Karl Eriksson

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Bernd Sturmfels, Chair

Algebraic statistics is the study of the algebraic varieties that correspond to

discrete statistical models. Such statistical models are used throughout computational

biology, for example to describe the evolution of DNA sequences. This perspective on

statistics allows us to bring mathematical techniques to bear and also provides a source

of new problems in mathematics.

The central focus of this thesis is the use of the language of algebraic statistics

to translate between biological and statistical problems and algebraic and combinato-

rial mathematics. The wide range of biological and statistical problems addressed in

this work come from phylogenetics, comparative genomics, virology, and the analysis of

ranked data. While these problems are varied, the mathematical techniques used in this

work share common roots in the field of combinatorial commutative algebra. The main

mathematical theme is the use of ideals which correspond to combinatorial objects such

as magic squares, trees, or posets. Biological problems suggest new families of ideals,

and the study of these ideals can in some cases be useful for biology.

Professor Bernd Sturmfels
Dissertation Committee Chair
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Chapter 1

Introduction

The main theme of this thesis is the interplay between statistical models and

algebraic techniques. More and more, the fields of statistics and biology are generating a

wealth of interesting mathematical questions. In return, discrete mathematics provides

techniques for the solution of these problems, as well as a theoretical framework from

which to ask new questions. From this interplay, the field of algebraic statistics has

emerged. Its main purpose is the development of computational and theoretical tech-

niques in algebra and combinatorics for applications to practical statistical problems.

These techniques supply a valuable mathematical language for the study of computa-

tional biology.

Computational biology has been a wonderful source of problems in combina-

torics and combinatorial computer science due to the discrete structure of biological

objects, notably DNA. For example, counting alignments and counting RNA secondary

structures are typical enumerative problems [104]. For other connections between the

fields, we note how biology has motivated mathematicians to better understand the struc-

ture of the space of trees [16] and how distance measures between signed permutations

[41] provide methods for understanding genome rearrangement through evolution.

While biology provides a fount of such interesting questions, it is desirable at

the end of the day to better understand real data. And because there is always error

in experimental data, this problem requires the use of statistics. Thus, we must form a

connection between statistics and mathematics that allows us to use the combinatorial
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properties of the underlying problems in order to analyze data in a rigorous, robust, and

efficient way.

In this thesis, we provide a series of interrelated illustrations of how algebraic

combinatorics can be used to increase our understanding of statistical and biological

problems. We also demonstrate how biological questions can lead to interesting math-

ematics. The examples we study are drawn from statistics, phylogenetics, comparative

genomics, and virology. The underlying mathematical philosophy is that statistical mod-

els can be viewed as algebraic varieties. Our examples draw from a small set of statistical

models which we introduce in this chapter: exponential families, phylogenetic models,

and Bayesian networks.

In the rest of this introduction, we will briefly outline the new field of algebraic

statistics and explain the major algebraic, statistical, and biological ideas that will be

used throughout the thesis. We refer the reader to the book [73] for more details.

1.1 Algebraic statistics

Algebraic statistics depends on a set of tools that allow us to translate problems in statis-

tics into algebraic language. We assume the reader is familiar with the basic language of

algebraic geometry, namely polynomials, ideals, and varieties. In addition, we will use

Gröbner bases throughout the thesis as a computational tool. For a friendly introduction

to ideals and Gröbner bases, see [27].

Let X be a discrete random variable taking values in the set [n] = {1, 2, . . . , n}.

We write pi as shorthand for Pr(X = i), the probability that X is in state i. Let ∆n−1

be the (n − 1) dimensional probability simplex, e.g.,

∆n−1 = {(p1, . . . , pn) ∈ R
n | pi ≥ 0,

n
∑

i=1

pi = 1}.

We will write ∆ for the simplex ∆n−1 when the space is understood. A statistical

model for X is simply a family of probability distributions M ⊂ ∆. We will restrict

our attention to statistical models M which are given as the image of a polynomial

parameterization. That is, for every vector of parameters θ = (θ1, . . . , θd) we associate

a probability distribution (p1(θ), . . . , pn(θ)) ∈ ∆ where p1(θ), . . . , pn(θ) are polynomials
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in d unknowns. Given such a polynomial map

p : R
d → R

n

θ = (θ1, . . . , θd) 7→ (p1(θ), p2(θ), . . . , pn(θ)),

the associated statistical model is given by M = p(Θ) where Θ is an appropriate, non-

empty, open set in R
d, called the parameter space. If we are concerned with obtaining

actual probability distributions via this map, we can either impose constraints on Θ in

order to make sure that p(Θ) ⊂ ∆, or we can take the model to be M = p(Θ) ∩ ∆.

However, we shall usually ignore this issue and will even assume that the ground field is

C rather than R in order to work over an algebraically closed field.

A natural question we might ask about a statistical model is what relations

among the probabilities p1, . . . , pn are satisfied at all points in the model p. Since p is

a polynomial map, these relations are given by polynomials which can be found using

Gröbner bases.

Example 1.1. Let X and Y be two binary random variables taking values in {0, 1}.

We place the independence model on X and Y , e.g., Pr(X,Y ) = Pr(X) Pr(Y ). We write

this model in terms of parameters α = Pr(X = 0) and β = Pr(Y = 0), and we write

pij = Pr(X = i, Y = j). Then the parameterization is given by





p00 p01

p10 p11



 =





αβ α(1 − β)

(1 − α)β (1 − α)(1 − β)





The following Singular [52] code computes the relations between the pij which

characterize the image of the parameterization.

// create rings

ring A=0,(p00,p01,p10,p11),lp;

ring B=0,(alpha,beta),lp;

// create ring map A -> B

map p = A,

alpha*beta,

alpha*(1-beta),

(1-alpha)*beta,

(1-alpha)*(1-beta);

// compute the kernel of the map
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ideal B0 = 0;

setring A;

preimage(B,p,B0);

Singular outputs the following:

_[1]=p01*p10+p01*p11+p10*p11+p11^2-p11

_[2]=p00+p01+p10+p11-1

The second polynomial is the condition that the probabilities sum to one. The first

polynomial doesn’t look familiar, but after substituting p11 = 1 − p00 − p01 − p10 for

one of the factors p11 in the term p2
11, we get the determinant of the joint probability

matrix p00p11 − p01p10 as expected. We actually did not need to make this polynomial

homogeneous by hand, we could have made the map homogeneous instead and then

added in the condition that the probabilities sum to one. Statisticians might recognize

this determinant as the odds ratio p00p11

p01p10
= 1 in the case where all probabilities are

non-zero.

Next we give a slightly less trivial example which is a special case of two impor-

tant classes of statistical models studied in this thesis: phylogenetic models and Bayesian

networks.

Example 1.2. Let T be the “claw tree” with three leaves pictured in Figure 1.1. At

the root, we have a binary random variable X with distribution (π0, π1). We also have

binary random variables Y1, Y2, Y3 at the three leaves. Our statistical model M will

encapsulate the assumptions that the leaves are observed, the root is hidden, and the

leaves are independent given the root.

This model is given parametrically by giving a root distribution (π0, π1) and

conditional probabilities θk
ji := Pr(Yk = i | X = j). In terms of these parameters, the

joint probabilities are given by

p000 = π0θ
1
00θ

2
00θ

3
00 + π1θ

1
10θ

2
10θ

3
10, p001 = π0θ

1
00θ

2
00θ

3
01 + π1θ

1
10θ

2
10θ

3
11,

p010 = π0θ
1
00θ

2
01θ

3
00 + π1θ

1
10θ

2
11θ

3
10, p011 = π0θ

1
00θ

2
01θ

3
01 + π1θ

1
10θ

2
11θ

3
11,

p100 = π0θ
1
01θ

2
00θ

3
00 + π1θ

1
11θ

2
10θ

3
10, p101 = π0θ

1
01θ

2
00θ

3
01 + π1θ

1
11θ

2
10θ

3
11,

p110 = π0θ
1
01θ

2
01θ

3
00 + π1θ

1
11θ

2
11θ

3
10, p111 = π0θ

1
01θ

2
01θ

3
01 + π1θ

1
11θ

2
11θ

3
11.
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(

θ2
00 θ2

01

θ2
10 θ2

11

)

(

θ1
00 θ1

01

θ1
10 θ1

11

) (

θ3
00 θ3

01

θ3
10 θ3

11

)

(π0, π1)

Y2Y1 Y3

X

Figure 1.1: A simple statistical model.

We can see (for example, by using Singular) that the image of this map is all of R
8. If

we add in the constraints on the parameter space given by π0 + π1 = 1 and θk
j0 + θk

j1 = 1

for j ∈ {0, 1} and k ∈ {1, 2, 3}, then we recover the fact that the sum of the joint

probabilities is one:

p000 + p001 + p010 + p011 + p100 + p101 + p110 + p111 = 1.

However, this puts no additional constraints on the probability distribution.

But if we add the additional constraint that the root distribution is uniform

(e.g., π0 = π1 = 1
2), then we get a non-trivial polynomial invariant of degree 3 with 40

terms that the joint probabilities must satisfy:

p2
000p111 − p000p001p110 + p000p001p111 − p000p010p101 + p000p010p111 − p000p011p100−

2p000p011p101 − 2p000p011p110 − p000p011p111 + p000p100p111 − 2p000p101p110 + · · ·+

p2
011p100 − p011p

2
100 − p011p100p101 − p011p100p110 + p011p100p111 − 2p011p101p110.

This resulting model is a hypersurface in the probability simplex ∆7.

One of the strengths of algebraic statistics is that it allows us to find non-

obvious, complicated relations such as this. The challenge, however, is to understand

the combinatorial structure of such a polynomial and then to use this knowledge in order

to find a meaningful statistical interpretation.
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This model is called a naive Bayes model. It is a special case of the phylo-

genetic models that we will introduce in Section 1.3 and study in Chapters 3, 4, and

5. Phylogenetic models are special cases of Bayesian networks, which will be used in

Chapter 6.

1.2 Toric ideals and exponential families

An important special class of polynomial ideals are the toric ideals. Toric ideals are prime

ideals with a generating set of binomials. Equivalently, they are given by a monomial

parameterization. In this section, we provide a brief introduction to the theory of toric

ideals and their close relationship to the statistical models called exponential families.

See [98] for more details about toric ideals.

Let A be a d×n matrix with integer entries written as A = (aij) = (a1, . . . ,an) ∈

Z
d×n. This matrix determines a map, fA : (C∗)d → C

n, given by

fA(θ1, . . . , θd) =

(

d
∏

i=1

θai1
i ,

d
∏

i=1

θai2
i , . . . ,

d
∏

i=1

θain

i

)

Definition 1.3. The toric variety XA is the closure of the image of the map fA. If

every column of A has the same sum, we say that A is homogeneous and that XA is a

projective toric variety.

Definition 1.4. The toric ideal IA ⊂ C[p] is the vanishing ideal of XA. Alternatively,

we can define IA via the (infinite) generating set

IA = 〈pu − pv | A(u− v) = 0 and u,v ∈ Z
n
≥0〉.

If A is homogeneous, then the binomials pu − pv are homogeneous.

Projective toric varieties correspond to an important subclass of exponential

families, the log-linear models.

Definition 1.5. The log-linear model MA associated to A = (a1, . . . ,an) is the proba-

bility distribution in ∆n−1 defined by

Pθ(X = i) =
1

Z
e〈ai,θ〉 for 1 ≤ i ≤ n, θ ∈ R

d.
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where Z =
∑n

i=1 e〈ai,θ〉 is a normalizing constant and 〈, 〉 is the standard inner product

on R
n.

To see that IA vanishes on MA, notice that for u = (u1, . . . , un) ∈ N
n with

∑n
i=1 ui = N ,

pu =

n
∏

i=1

Pθ(X = i)ui =
1

ZN
e

Pn
i=1 ui〈ai,θ〉 =

1

ZN
e〈Au,θ〉.

Therefore, if Au = Av and A is homogeneous, we see that pu−pv vanishes on the model

MA. Notice that if we remove the normalizing factor Z−1 in the definition of a log-linear

model this corresponds to switching to the affine toric variety from the projective one.

Now suppose that we have a series of observations X1, . . . ,XN ∈ [n] that are

independent draws from the distribution given by some unknown probability vector p

in the model M. For statistical inference about p using the likelihood framework we

work with the likelihood function which associates to every p ∈ M the probability of

observing X1, . . . ,XN given the distribution p. This likelihood clearly depends only on

the counts u ∈ Z
n, where ui is the number of X1, . . . ,XN that equal i. As we saw above,

the probability of observing X1, . . . ,XN is given by

Pθ(X
1, . . . ,XN ) =

1

ZN
e〈Au,θ〉.

That is, Au is a sufficient statistic for the model Pθ.

We can consider Pθ as a distribution on the counts u by

Pθ(u) =

(

N

u1, . . . , un

)

1

ZN
e〈Au,θ〉.

This corresponds to forgetting the order of the samples X1, . . . ,XN . An elementary

calculation shows that

Pθ(u | Au = t)

does not depend on θ, this is true precisely because A is a sufficient statistic. This

property will prove important in Chapter 2 when we wish to sample from the conditional

distribution of all data with a fixed sufficient statistic.

We conclude our discussion of toric ideals with a description of how to compute

generators for toric ideals using the software 4ti2 [53].
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Example 1.6. Let T again be the claw tree with three leaves. We take the same model

as in Example 1.2 except we make the root node observed and we require that each

edge has the same transition matrix. This is called the the fully observed, homogeneous,

binary Markov model on T and will be studied in Chapter 3.

Take the root distribution to be uniform and relax the condition that the tran-

sition parameters sum to one. This leaves four parameters which we write θ00, θ01, θ10,

and θ11. This is a toric model, since the parameterization pijkl = θijθikθil is monomial

(we write pijkl for the probability that the root is in state i and the leaves are in states

j, k, and l). This parameterization corresponds to a 4 × 16 matrix A which we save in

a file tree3 in the form

4 16

3 2 2 1 2 1 1 0 0 0 0 0 0 0 0 0

0 1 1 2 1 2 2 3 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 3 2 2 1 2 1 1 0

0 0 0 0 0 0 0 0 0 1 1 2 1 2 2 3

For example, column three of A corresponds to the probability p0010 = θ2
00θ01 of having

a tree with a zero at the root and at two of the three leaves. To find a Gröbner basis,

run the command groebner tree3 which produces an output file named tree3.gro

14 16

-1 1 0 1 0 0 0 -1 0 0 0 0 0 0 0 0

-1 2 0 -1 0 0 0 0 0 0 0 0 0 0 0 0

0 -1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 -1 0 2 0 0 0 -1 0 0 0 0 0 0 0 0

0 -1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 -1 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 -1 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 -1 1 0 1 0 0 0 -1

0 0 0 0 0 0 0 0 -1 2 0 -1 0 0 0 0

0 0 0 0 0 0 0 0 0 -1 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 -1 0 2 0 0 0 -1

0 0 0 0 0 0 0 0 0 -1 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 -1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 -1 0 1 0 0

Each row w of this matrix corresponds to an element of the Gröbner basis as follows.

Write w in the form u− v where u,v ∈ N
16. Then the row corresponds to the binomial
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pu − pv. For example, row two gives the relation p2
0001 − p0000p0011.

Notice that of the fourteen basis elements, eight are linear (e.g., row three) and

six are of degree two (e.g., row one). Modulo the linear relations, algebraic geometers will

recognize this variety as being the free join of two copies of the third Veronese embedding

of P
1 in P

3.

1.3 Phylogenetic algebraic geometry

In this section, we introduce Markov models on trees, a subject that will be explored

further in Chapters 3, 4, and 5. As above, a statistical model on a tree gives an algebraic

variety, and these varieties depend in interesting ways on the combinatorics of the trees

and of the underlying statistical model. For more details on the algebraic viewpoint on

phylogenetics, with many references and open problems, see [45].

The basic object in a phylogenetic model is a tree T which is rooted and has n

labeled leaves. Each node of the tree T is a random variable taking values in the alphabet

Σ. We write k = |Σ| for the number of possible states. At the root, the distribution of the

states is given by π = (π1, . . . , πk). On each edge e of the tree there is a k × k transition

matrix Me whose entries are indeterminates representing the probabilities of transition

(away from the root) between the states. Typically, the random variables at the interior

nodes will be hidden and the random variables at the leaves will be observed, although

we will also consider the case where all nodes are observed in Chapter 3. The entries

of the matrices Me and the vector π are the model parameters. For instance, if T is a

binary tree with n leaves then T has 2n− 2 edges, and hence we have d = (2n− 2)k2 + k

parameters.

In practice, there will be many constraints on these parameters, usually express-

ible in terms of linear equations and inequalities, so the set of statistically meaningful

parameters is a polyhedron Θ in R
d. For example, one common set of constraints corre-

sponds to making the rows of the transition matrices Me and the vector π sum to one.

Specifying this subset Θ means choosing a model of evolution. In the next section we

will discuss several models of evolution with different degrees of biological relevance.

At each leaf of T we can observe k possible states, so there are kn possible
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joint observations we can make at the leaves. The probability pσ of making a particular

observation σ ∈ Σn is a polynomial in the model parameters. Hence we get a polynomial

map whose coordinates are the polynomials pσ,

p : Θ ⊂ R
d → R

kn

(θ1, . . . , θd) 7→ (pσ(θ) | σ ∈ Σn).

The image of this map is our phylogenetic model.

For every tree and every parameter set Θ, we get such a variety. This leads to

a host of interesting algebraic questions. For example: pick Θ and describe the resulting

stratification of R
kn

by the varieties for all trees with n leaves.

Example 1.7. Again, let T be the claw tree with three leaves in Figure 1.1. As in

Example 1.2 make the root node hidden, and let all the random variables have k states.

We fix no constraints on the parameters, so each edge has k2 parameters associated to

it. This model is called the general Markov model. The variety of T is given by

XT = Seck(Pk−1 × P
k−1 × P

k−1),

where we write Seck(V ) for the k-th secant variety of V (i.e., the variety of all secant

P
k−1’s to V ). To see this, notice that the parameterization consists of one copy of the

parameterization of the Segre variety for each value of the hidden state. We have seen this

parameterization for k = 2 in Example 1.2, where we saw that Sec2(P1 × P
1 × P

1) = P
7.

1.4 Genomics and phylogenetics

Phylogenetics is the field of biology concerned with resolving the evolutionary relation-

ships among and between organisms. With the recent explosion of genomic data, the

focus of phylogenetics has been on understanding models of DNA evolution and us-

ing these models to infer ancestral relationships. Standard phylogenetic techniques fall

broadly into two classes: distance based and character based. Distance methods rely on

estimating pairwise distances between species and then try to find a tree which gives

similar distances. The most common example of this method is neighbor joining [83].

Character based methods start with a multiple alignment (defined below) and typically
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perform model selection in some family of statistical models of evolution. For example,

likelihood or parsimony methods are character based. We believe that algebraic statistics

provides an interesting new viewpoint on character based tree construction techniques.

In this section, we describe some of the basic biological facts needed to un-

derstand phylogenetic models and then delve into the practical side of the algebraic

statistics of these models. See the books [46, 86] for introductions to the mathematical

and algorithmic sides of the field of phylogenetics.

The basic genetic information of an organism is (almost always) carried in the

form of DNA, a double helix consisting of two complementary polymers bound together.

The four nucleotides that form DNA come in two types: the purines (A and G) and the

pyrimidines (C and T). The two strands of the double helix are joined together via the

base pairings A to T (via 2 hydrogen bonds) and C to G (via 3 hydrogen bonds).

Since each cell typically contains a copy of the DNA of the organism, DNA

copying occurs frequently. Several types of errors are possible during the replication

of DNA. Single bases can mutate, or large pieces of DNA can separate and become

reattached, possibly at another position, possibly in the opposite direction. These are

just some of the events that occur over the course of evolution.

In order to understand the relationships of various species from DNA data, we

must find sections of DNA in each species which we believe share a common ancestor.

This problem is called orthology mapping, and can be solved using software such as

mercator [32]. After orthologous regions are identified, they must be aligned using a

program such as MAVID [18]. The starting point for phylogenetic algorithms is a multiple

sequence alignment, as pictured in Figure 1.2. We will write an alignment as a set of n

strings of equal length from the alphabet Σ. In Figure 1.2, Σ = {A, C, G, T, -}.

The standard assumption in character-based phylogenetics is that evolution

happens independently at each point in the genome. We explore this assumption in

Chapter 5, searching for parts of the genome with extreme and unexpected correlation

between adjacent sites. However, the independence assumption makes the problem of

phylogenetics much easier since then the columns of the alignment can be considered as

independent, identically distributed samples.

In this manner, an alignment of n species gives an observed probability dis-
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platypus    1 --------------------------------------------------
mouse       1 AGTGTGTCTCGTCGTGCCTACTTTCAGGACGAGAGCAGGTGAGTGTTGAT
human       1 AGTGAGACACGACGAGCCTACTATCAGGACGAGAGCAGGAGAGTGATGAT

platypus    1 --------CTCTGCGGCGTTCGTCTCGGGTGGGTTGGGGGGTGGGGGTGT
mouse      51 GAGTTGCGCTCTGCGACGTTCATCTCGAGTGAGTTAGAAAGTGAAGGTAT
human      51 GAGTAGCGCACAGCGACGATCATCACGAGAGAGTAAGAA-----------

platypus   43 GGCGCAAGGTGTGAAGCACGACGACGATCTACGACGAGCGAGTGATGAGA
mouse     101 AACACAAGGTGTGA----------------------AGGCAGTGATGA--
human      90 --------------------------------------GCAGTGATGA--

platypus   93 GTGATGAGCGACGACGAGCACTAGAAGCGACGACTACTATCGACGAGCAG
mouse     127 -TGTAGAGCGACGA-GAGCAC----AGCGGCGG-----------------
human     100 -TGTAGAGCGACGA-GAGCAC----AGCGGCGA-----------------

platypus  143 CCGAGATGATGATGAAAGAGAGAGAA--------------
mouse     154 -------GATGATATATCTAGGAGGATGCCCAATTTTTTT
human     127 -----------CTACTACTAGG------------------

Figure 1.2: A multiple alignment of 3 DNA sequences from platypus, mouse and human.
The numbers refer to the current position in each sequence at the beginning of each line.

tribution pi1,...,in ∈ ∆|Σ|n−1. For example, the alignment in Figure 1.2 is of length 240

and corresponds to the probability distribution on all strings in {A, C, G, T, -}3 given by

(pAAA, pAAC, pAAG, pAAT, . . . , p---) = ( 9
240 , 0, 0, 1

240 , . . . , 0). That is, of the 240 columns in the

alignment, there are 9 columns with the pattern AAA, etc. We would like to discover

which tree topology best explains such a data point using a suitable statistical model.

Of course there is only one tree topology for our three leaf example.

As we have seen above, a statistical model in phylogenetics is given by con-

straints on the parameter space. If there are no constraints, this is the general Markov

model, studied in Chapter 4, in which each entry of each transition matrix is an inde-

pendent parameter. A much simpler model is known as the Jukes-Cantor model, where

each transition matrix has two parameters: one for the diagonal entries, one for the off-

diagonal entries. More complicated models such as the Kimura two- and three-parameter

models (see [73, Figure 4.7] for a full list) take into account the structure of DNA to

better weigh different types of mutations.

Phylogenetic models are usually stated in the language of continuous time

Markov chains. In this language, the specification of a model involves constraining the
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entries of a rate matrix Q and then taking, for an edge of length t, the transition matrix

to be etQ. Beware that if the tree is allowed to have only one rate matrix, then these

continuous models are typically only subsets of the algebraic models described above and

are not generally algebraic varieties.

If we fix a model of evolution, then every tree with n leaves gives rise to an

algebraic variety. The study of phylogenetic invariants consists of the determination of a

set of generators for the ideals of such varieties. For many of the algebraic phylogenetic

models, authors have worked on finding the phylogenetic invariants. We do not attempt

a comprehensive review of these results, but refer the reader to a sample of the original

papers [22, 59, 91, 92, 2, 3, 97].

To say that the data comes from the model for a specific tree means that the

polynomials defining this variety will all vanish on the data point. Our hope is that the

algebraic geometry of phylogenetic models can provide some clue regarding which tree

to pick, given this data point.

In practical terms, there are two problems with this approach. First the phy-

logenetic invariants are not known for many models, although progress has been made

in this direction. Second, since the data is not perfect, the phylogenetic invariants will

not evaluate to zero. Furthermore, since the generators of an ideal are not canonically

defined, the results of the evaluation will depend on which set of generators is chosen.

In Chapter 4, we present methods for the general Markov model that avoid these two

problems by using as generators certain rank conditions on flattenings of the data.

1.5 Outline of the thesis

Chapter 2 is devoted to an application of toric ideals to the problem of sampling from

discrete exponential families, which is one of the founding problems in algebraic statis-

tics. In Chapter 3, the theme of toric ideals is picked up again, this time in the context

of the simplified phylogenetic model that we introduced in Example 1.6. A more gen-

eral, realistic phylogenetic model is studied in Chapter 4. We show how the algebraic

properties of this model can be used to build phylogenetic trees. These are the first

practical methods for tree construction using phylogenetic invariants and we hope they
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can provide motivation for how algebraic statistics can be used in practice.

In Chapter 5, we study genomic sequences which are perfectly preserved at

extreme evolutionary distances. This provides an example of how comparative genomics

can help derive the function of genomic elements. We also apply our phylogenetic models

to quantify the evolutionary significance of these highly-conserved elements. Finally, in

Chapter 6 we again study evolution, but this time in the very specialized case in which

the organism is under severe pressure and can evolve in only one direction. The set of

possible genotypes is modeled as a distributive lattice and Bayesian networks are used

to study evolution proceeding up this lattice. We are concerned with the risk that the

organism escapes from the selective pressure, which is the probability that it evolves to

the top of the lattice before becoming extinct. This risk depends on the combinatorics

of the lattice.
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Chapter 2

Markov bases for noncommutative

analysis of ranked data

In this chapter, we give a general methodology for studying group valued data

where the summary we are interested in is given by a representation of the group. In

particular, we analyze in detail the case of ranked data. Our main example of ranked

data is the case of an election where every voter was asked to rank the five candidates.

Our methods depend on two tools. First, we show how Fourier analysis and

representation theory can be used to obtain descriptive statistics of group-valued data.

In the case of ranked data, this gives in particular a description of how likely a voter

would be to rank a given pair of candidates in a given pair of positions. Second, in order

to calibrate these methods, we show how to use Markov chain Monte Carlo techniques to

sample from group-valued data with a fixed summary. In order to run a Markov chain, a

set of moves (a Markov basis) is needed. We calculate this basis using the theory of toric

ideals and show how symmetry can be very helpful in these calculations. The material

in this chapter comes from the paper [37], with Persi Diaconis.

We believe that these methods can be useful in computational biology. For

example, suppose we want to understand how the fitness of an organism depends on

the order of certain genes in its genome. Understanding this dependence can lead to a

picture of the regulatory network for these genes. The function that assigns a fitness

value to each ordering of the genes is called a fitness landscape. This fitness landscape
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can be analyzed using the methods discussed in this chapter in order to understand how

the position of a pair of genes affects the total fitness.

From the perspective of [11], a fitness landscape corresponds to a triangulation

of a certain polytope that encodes the space of genotypes. In our case, this polytope

is the Birkhoff polytope. It would be interesting to study the relationship between the

triangulations of the Birkhoff polytope obtained from fitness landscapes and the spectral

analysis presented in this chapter.

2.1 Election data with five candidates

Table 2.1 shows the results of an election. A population of 5738 voters was asked to rank

five candidates for president of a national professional organization. The table shows the

number of voters choosing each ranking. For example, 29 voters ranked candidate 5 first,

candidate 4 second, . . . , and candidate 1 last, resulting in the entry 54321 = 29. Table 2.2

shows a simple summary of the data: the proportion of voters ranking candidate i in

position j. For example, 28.0% of the voters ranked candidate 3 first and 23.1% of the

voters ranked candidate 3 last.

Table 2.2 is a natural summary of the 120 numbers in Table 2.1, but is it an

adequate summary? Does it capture all of the signal in the data? In this paper, we

develop tools to answer such questions using Fourier analysis and algebraic techniques.

In Section 2.2, we give a general exposition of how noncommutative Fourier

analysis can be used to analyze group valued data with summary given by a represen-

tation ρ. In order to use Markov chain Monte Carlo techniques to calibrate the Fourier

analysis, we define an exponential family and toric ideal (as introduced in Section 1.2)

associated to a finite group G and integer representation ρ. A generating set of the toric

ideal can be used to run a Markov chain to sample from data on the group. For example,

the 14 moves in Table 2.3 allow us to randomly sample from the space of data on S5

with fixed first order summary (Table 2.2).

For example, the first entry in Table 2.2 corresponds to the move that adds

one to both of the 53412 and 54321 entries of the data and subtracts one from both the

53421 and 54312 entries. Notice that this move does not change the first order summary.
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Ranking # votes Ranking # votes Ranking # votes Ranking # votes

54321 29 43521 91 32541 41 21543 36
54312 67 43512 84 32514 64 21534 42
54231 37 43251 30 32451 34 21453 24
54213 24 43215 35 32415 75 21435 26
54132 43 43152 38 32154 82 21354 30
54123 28 43125 35 32145 74 21345 40
53421 57 42531 58 31542 30 15432 40
53412 49 42513 66 31524 34 15423 35
53241 22 42351 24 31452 40 15342 36
53214 22 42315 51 31425 42 15324 17
53142 34 42153 52 31254 30 15243 70
53124 26 42135 40 31245 34 15234 50
52431 54 41532 50 25431 35 14532 52
52413 44 41523 45 25413 34 14523 48
52341 26 41352 31 25341 40 14352 51
52314 24 41325 23 25314 21 14325 24
52143 35 41253 22 25143 106 14253 70
52134 50 41235 16 25134 79 14235 45
51432 50 35421 71 24531 63 13542 35
51423 46 35412 61 24513 53 13524 28
51342 25 35241 41 24351 44 13452 37
51324 19 35214 27 24315 28 13425 35
51243 11 35142 45 24153 162 13254 95
51234 29 35124 36 24135 96 13245 102
45321 31 34521 107 23541 45 12543 34
45312 54 34512 133 23514 52 12534 35
45231 34 34251 62 23451 53 12453 29
45213 24 34215 28 23415 52 12435 27
45132 38 34152 87 23154 186 12354 28
45123 30 34125 35 23145 172 12345 30

Table 2.1: American Psychological Association (APA) voting data: the number of voters
that ranked the 5 candidates in a given order.
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Rank
Candidate 1 2 3 4 5

1 18.3 26.4 22.8 17.4 14.8
2 13.5 18.7 24.6 24.6 18.3
3 28.0 16.7 13.8 18.2 23.1
4 20.4 16.9 18.9 20.2 23.3
5 19.6 21.0 19.6 19.2 20.3

Table 2.2: First-order summary: The proportion of voters who ranked candidate i in po-
sition j. This is a scaled version of the Fourier transform of Table 2.1 at the permutation
representation.

In Section 2.4 we show how this basis (Table 2.3) was computed — either using

Gröbner bases or by utilizing symmetry. We describe extensive computations of the basis

for ranked data on at most 6 objects. From these computations, we conjecture that the

toric ideal for Sn is generated in degree 3. In Section 2.5, we show that this ideal for

Sn is generated in degree n− 1, improving a result of [39], and we describe the degree 2

moves. Finally, in Section 2.6, we apply these methods to analyze the data in Table 2.1

and an example from [35].

2.2 Fourier analysis of group valued data

Let G be a finite group (in our example, G = S5). Let f : G → Z be any function on G.

For example, if g1, g2, . . . , gN is a sample of points chosen from a distribution on G, take

f(g) to be the number of sample points gi that are equal to g. We view f interchangeably

as either a function on the group or an element of the group ring Z[G]. Recall that a

map ρ : G → GL(Vρ) is a matrix representation of G if ρ(st) = ρ(s)ρ(t) for all s, t ∈ G.

The dimension dρ of the representation ρ is the dimension of Vρ as a C-vector space. We

say that a ρ is integer-valued if ρij(g) ∈ Z for all g ∈ G and for all 1 ≤ i, j ≤ dρ. We

denote the set of irreducible representations of G by Ĝ.

An analysis of f(g) may be based on the Fourier transform. The Fourier trans-

form of f at ρ is

f̂(ρ) =
∑

g∈G

f(g)ρ(g). (2.1)

The Fourier transform at all the irreducible representations ρ ∈ Ĝ determines f through
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Move Number Move Number
[

53412
54321

]

−

[

53421
54312

]

450

[

45231
54312

]

−

[

45312
54231

]

600




54123
54231
54312



−





54132
54213
54321



 200





53412
54123
54231



−





53421
54132
54213



 3600





45123
54231
54312



−





45132
54213
54321



 200





45123
53412
54231



−





45132
53421
54213



 7200





43512
54123
54231



−





43521
54132
54213



 3600





43512
53241
54123



−





43521
53142
54213



 3600





45231
52341
53412



−





45312
52431
53241



 7200





45132
52341
53412



−





45312
52431
53142



 3600





34512
45123
53241



−





34521
45213
53142



 600





34521
45213
53142



−





35142
43521
54213



 600





35142
43521
54213



−





35241
43512
54123



 600





34521
45312
52143



−





35142
42513
54321



 1440

Table 2.3: A Markov basis for S5 with 29890 moves in 14 symmetry classes.
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S5 S4,1 S3,2 S3,1,1 S2,2,1 S2,1,1,1 S1,1,1,1,1

d2
ρ 1 16 25 36 25 16 1

Data 2286 298 459 78 27 7 0

Table 2.4: Squared length (divided by 120) of the projection of the APA data (Table 2.1)
into the 7 isotypic subspaces of S5.

the Fourier inversion formula

f(g) =
1

|G|

∑

ρ∈Ĝ

dρ Tr(f̂(ρ)ρ(g−1)), (2.2)

which can be rewritten as f(g) =
∑

ρ∈Ĝ f |Vρ(g), where

f |Vρ(g) =
dρ

|G|

∑

h∈G

χρ(h)f(gh). (2.3)

This decomposition shows the contributions to f from each of the irreducible representa-

tions of G. For example, if a few of the f |Vρ are large, we can analyze these components

in order to understand the structure of f . See [34, 35] for background, proofs, and

previous literature.

Example 2.1. This analysis is most familiar for the cyclic group Cn where it becomes

the discrete Fourier transform

f̂(j) =
n−1
∑

k=0

f(k)e−2πijk/n, f(k) =
1

n

n−1
∑

j=0

f̂(j)e2πikj/n (2.4)

In (2.4), if a few of the f̂(j) are much larger than the rest, then f is well understood as

approximately a sum of a few periodic components.

For the symmetric group Sn, the permutation representation assigns permuta-

tion matrices ρ(π) to permutations π. Thus, if f(π) is the number of rankers choosing

π, f̂(ρ) is a n× n matrix with (i, j) entry the number of rankers ranking item i in posi-

tion j (as in Table 2.2). The irreducible representations of S5 are indexed by the seven

partitions of five and are written as Sλ where λ is a partition of 5. For our data, (2.2)

gives a decomposition of f into 7 parts. Table 2.4 shows the lengths of the projection of

Table 2.1 onto the seven isotypic subspaces of S5.
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Ranks
Candidates 1,2 1,3 1,4 1,5 2,3 2,4 2,5 3,4 3,5 4,5

1,2 -137 -20 18 140 111 22 4 6 -97 -46
1,3 476 -88 -179 -209 -147 -169 -160 107 128 241
1,4 -189 51 113 24 -9 98 99 -65 23 -146
1,5 -150 57 47 45 43 49 56 -48 -53 -48
2,3 -42 84 19 -61 30 -16 82 -76 -39 72
2,4 157 -20 -43 -25 -93 -76 -56 8 38 112
2,5 22 -44 7 15 -117 69 25 62 99 -138
3,4 -265 -7 72 199 39 140 85 19 -52 -233
3,5 -169 10 88 70 78 44 47 -51 -36 -80
4,5 296 -24 -142 -130 -5 -163 -128 38 -9 267

Table 2.5: Second order summary for the APA data.

The largest contribution to the data occurs from the trivial representation S5.

We call the projection onto S5 ⊕S4,1 the first order summary; it was shown in Table 2.2

above. We see that the projection onto S3,2 is also sizable while the rest of the projections

are relatively negligible. This suggests a data-analytic look at the projection into S3,2.

Table 2.5 shows this projection in a natural coordinate system. This projection is based

on the permutation representation of S5 on unordered pairs {i, j}. Table 2.5 is an

embedding of a 25 dimensional space into a 100 dimensional space so that its coordinates

are easy to interpret. See [35] for further explanation.

The largest number in Table 2.5 is 476 in the {1, 3}, {1, 2} position correspond-

ing to a large positive contribution to ranking candidates one and three in the top two

positions. There is also a large positive contribution for ranking candidates four and

five in the top two positions. Since Table 2.5 gives the projection of f onto a subspace

orthogonal to S5⊕S4,1, the popularity of individual candidates has been subtracted out.

We can see the “hate vote” against the pair of candidates one and three (and the pair

four and five) from the last column. Finally, the negative entries for e.g., pairs one and

four, one and five, three and four, three and five show that voters don’t rank these pairs

in the same way.

The preceding analysis is from [35] which used it to show that noncommutative

spectral analysis could be a useful adjunct to other statistical techniques for data anal-

ysis. The data is from the American Psychological Association — a polarized group of
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academicians and clinicians who are on very uneasy terms (the organization almost split

in two just after this election). Candidates one and three are in one camp, candidates

four and five from the other. Candidate two seems to be disliked by both camps. The

winner of the election depends on the method of allocating votes. For example, the

Hare system or plurality voting would elect candidate three. However, other widely used

voting methods (Borda’s sum of ranks or Coomb’s elimination system) elect candidate

one. For details and further analysis of the data, see [93].

2.3 Exponential families

To explain the perturbation analysis in Section 2.6, it is useful to consider a simple

exponential model for group-valued data.

Definition 2.2. Let ρ be a n dimensional, integer-valued representation of a finite

group G. Then the exponential family of G and ρ is given by the family of probability

distributions on G

PΘ(g) = Z−1eTr(Θρ(g)) (2.5)

where the normalizing constant is Z =
∑

g∈G eTr(Θρ(g)) and Θ is a n × n matrix of

parameters to be chosen to fit the data.

For example let G = Sn and ρ be the usual permutation representation. Then

if Θ is the zero matrix, PΘ is the uniform distribution. If Θ1,1 is nonzero and Θi,j is

zero otherwise, the model PΘ corresponds to item one being ranked first with special

probability, the rest ranked randomly. Such models have been studied by [88, 102, 35].

See [63] for a book-length treatment of models for permutation data. In the notation of

Section 1.2, this exponential family is characterized by a d2
ρ×|G| matrix A with columns

given by ag = ρ(g).

From the Darmois-Koopman-Pitman Theorem [38, Theorem 3.1], we deduce

Proposition 2.3. The model (2.5) has the property that a sufficient statistic for Θ

based on data f(π) is the Fourier transform f̂(ρ). Furthermore, (2.5) is the unique

model characterized by this property.
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Definition 2.4. Given a finite group G and an integer valued representation ρ of di-

mension dρ define the toric ideal of G at ρ as IG,ρ = ker(φG,ρ), where

φG,ρ : C[xg | g ∈ G] −→ C[t±1
ij | 1 ≤ i, j ≤ dρ]

xg 7−→
∏

1≤i,j≤dρ

t
ρij(g)
ij .

This ideal is the vanishing ideal of the exponential family from Definition 2.2.

It will be our main object of study in Sections 2.4 and 2.5.

Remark 2.5. For representations which are not integer valued, the previous construction

does not work. However, these representations give rise to lattice ideals as follows. Let

G be a finite group and ρ : G → GL(V ) be a dρ dimensional complex representation.

Then extend ρ linearly to a map ρ : Z[G] → GL(V ). The kernel of ρ is a lattice in Z[G]

which we write as LG,ρ = ker ρ. Let IG,ρ be the associated lattice ideal. That is, IG,ρ is

the ideal in C[xg | g ∈ G] corresponding to all additive relations between ρ(g) for g ∈ G.

We believe that this family of toric and lattice ideals arising from group rep-

resentations is deserving of further study. In particular, while this paper analyzes the

group Sn and the permutation representation Sn ⊕ Sn−1,1, it could be interesting to

analyze the representation Sn−2,2 corresponding to the second order summary.

As suggested by [48], tests of goodness of fit of the model (2.5) should be based

on the conditional distribution of the data f given the sufficient statistic f̂(ρ). Since

f̂(ρ) is a sufficient statistic, it is easy to see that the conditional distribution is given by

PΘ(f |f̂(ρ)) = w−1
∏

σ∈G

1

f(σ)!
, where w =

∑

g∈Z[G]

ĝ(ρ)=f̂(ρ)

∏

σ∈G

1

g(σ)!
. (2.6)

Observe that the conditional distribution in (2.6) is free of the unknown parameter Θ,

this is a consequence of the fact that f̂(ρ) is a sufficient statistic, as noted in Section 1.2.

The original justification for the Fourier decomposition is model free (non-

parametric). The first order summary in Table 2.2 is a natural object to look at and the

second order summary was analyzed because of a sizable projection to S3,2 in Table 2.4.

It is natural to wonder if the second order summary is real or just a consequence of

finding patterns in any set of numbers. To be honest, the APA data is not a sample
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(those 5,972 who choose to vote are likely to be quite different from the bulk of the

100,000 or so APA members). If the first order summary is accepted “as is”, the largest

probability model for which f̂(ρ) captures all the structure in the data is the exponential

family (2.5). It seems natural to use the conditional distribution of the data given f̂(ρ)

as a way of perturbing things. The uniform distribution on data with fixed f̂(ρ) is a

much more aggressive perturbation procedure. Both are computed and compared in

Section 2.6.

2.4 Computing Markov bases for permutation data

To carry out a test based on Fisher’s principles, we use Markov chain Monte Carlo to

draw samples from the distribution (2.6).

Definition 2.6. A Markov basis for a finite group G and a representation ρ is a finite

subset of “moves” g1, . . . , gB ∈ Z[G] with ĝi(ρ) = 0 such that any two elements in N[G]

with the same Fourier transform at the representation ρ can be connected by a sequence

of moves in that subset.

In [39] it was explained how Gröbner basis techniques could be applied to find

such Markov bases.

Proposition 2.7. A generating set of IG,ρ (see Definition 2.4) is a Markov basis for the

group G and the representation ρ.

We will write ISn for our main example, the ideal of Sn with the permutation

representation ρ. The representation ρ : N[Sn] → N
n2

sends an element of Sn to its per-

mutation matrix. The elements b ∈ N
n2

with ρ−1(b) non-empty are the magic squares,

that is, matrices with non-negative integer entries such that all row and column sum are

equal. We write an element π1 + · · · + πm ∈ N[Sn] as a tableau











π1(1) . . . π1(n)
...

...

πm(1) . . . πm(n)











.

In this notation, a Markov basis element is written as a difference of two tableaux. For

example, the degree 2 element of the Markov basis for S5,





13452

14325



 −





13425

14352



, corre-
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S3 Move Number S4 Move Number




123
231
312



−





132
213
321



 1

[

1234
2143

]

−

[

1243
2134

]

18





2314
2431
4123



−





2134
2413
4321



 144





1324
2134
3214



−





1234
2314
3124



 16

Table 2.6: Markov bases for S3 and S4 and the size of their symmetry classes.

sponds to adding one to the entries 13452 and 14325 in Table 2.1 and subtracting one

from the entries 13425 and 14352.

At the time of writing [39], finding a Gröbner basis for IS5 was computationally

infeasible. Due to an increase in computing power and the development of the software

4ti2 [53], we were able to compute a Gröbner and a minimal basis of IS5 .

This computation involved finding a Gröbner basis of a toric ideal involving 120

indeterminates. It took 4ti2 approximately 90 hours of CPU time on a 2GHz machine

and produced a basis with 45,825 elements. The Markov basis had 29890 elements,

1050 of degree 2 and 28840 of degree 3, see Tables 2.3 and 2.7. Using 4ti2, we have

also computed Markov bases of the ideals ISn for n = 3 and n = 4, they are shown in

Table 2.6.

Although the calculation for S6 is currently not possible using Gröbner basis

methods, there is a natural group action that reduces the complexity of this problem.

The group Sn × Sn acts on N
n2

by permuting rows and columns. If we permute the

rows and columns of a magic square, we still have a magic square, therefore, this action

lifts to a group action on the Markov basis of ISn . In terms of tableaux, one copy of Sn

acts by permuting columns of the tableau, the other acts by permuting the labels in the

tableau. We have calculated orbits under this action; notice that the symmetrized bases

are remarkably small (Table 2.7).

To calculate a Markov basis for IS6, we had to construct the fiber over every

magic square with sum at most 5 (by Theorem 2.10) and then pick moves such that
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every fiber is connected by these moves [98, Theorem 5.3]. For degrees 2 and 3 this was

relatively straightforward (e.g., there are 20,933,840 six by six magic squares with sum

3). For these degrees, we constructed all squares and then calculated orbits of the group

action and calculated the fiber for each orbit (there were 11 orbits in degree 2 and 103

in degree 3).

However, there are 1,047,649,905 six by six magic squares of degree 4 and

30,767,936,616 of degree 5 [7], so complete enumeration was not possible. Instead, we

first randomly generated millions of magic squares with sums 4 or 5 using another Markov

chain. We broke these down into orbits, keeping track of the number of squares we had

found. For example, we needed to generate 30 million squares of degree 5 to find a

representative for each orbit. We were left with 2804 orbits for degree 4 and 65481 orbits

for degree 5. For degree 5, the proof of Theorem 2.10 shows that we only need to consider

magic squares with norm squared less that 50, leaving 13196 orbits to check. The fibers

were calculated by a depth first search with pruning. Remarkably, the computation

showed that IS6 is generated in degree three.

Theorem 2.8. The ideal ISn is minimally generated by 57,150 binomials of degree two

and 7,056,420 binomials of degree three. The degree two generators form seven orbits

under the action of S6×S6; the degree three generators form 51 orbits under this action.

The entire calculation for S6 took about 2 weeks, with the vast majority of

the time spent calculating orbits of degree 5 squares. Our data and code (in perl) are

available for download at http://math.berkeley.edu/∼eriksson. The code could be

easily adapted to calculate other Markov bases with a good degree bound and a large

symmetry group. Our calculations (see Table 2.7) suggest the following conjecture:

Conjecture 2.9. The ideal ISn is generated in degree 3.

2.5 Structure of the toric ideal ISn

Theorem 6.1 of [39] shows that every reverse lexicographic Gröbner basis of ISn has

degree at most n. By considering only minimal generators and not a full Gröbner basis,

we are able to strengthen this degree bound.

http://math.berkeley.edu/~eriksson
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Degree 2 Degree 3 Degree 4 Degree 5 Degree 6
n all sym all sym all sym all sym all sym

3 0 0 1 1
4 18 1 160 2 0 0
5 1050 2 28840 12 0 0 0 0
6 57150 7 7056240 51 0 0 0 0 0 0
7 3567690 12 ? ? ? ? ? ? ? ?

Table 2.7: Number of generators and symmetry classes of generators by degree in a
Markov basis for ISn .

Theorem 2.10. The ideal ISn is generated in degree n − 1 for n > 3.

Proof. Since we know that ISn is generated in degree n, we need to show that the fibers

over all magic squares with sum n are each connected by moves of degree n − 1 or less.

Let S and T be tableaux in ρ−1(b), where b is a magic square with sum n. Suppose

that the first row of S and the first row of T differ in exactly k places. Then we claim

that there is a degree k + 1 move that can be applied to S to get a tableau S′ ∈ ρ−1(b)

with the same first row as T .

To change the first row of S to make it agree with the first row of T , we have

to permute k elements of the first row of S. But to remain in the fiber, this means we

must also permute (at most) k other rows of S. For example, if the first row of S is

123 . . . n and the first row of T is 213 . . . n, we would also have to pick the row of S with

a 2 in the first column and the row with a 1 in the second column. Once we have picked

the (at most) k rows of S that must be changed, it follows from Birkhoff’s theorem [100,

Theorem 5.5] that we can change these k rows and the first row to make a new tableau

S′ ∈ ρ−1(b) that agrees with T in one row.

We applied a degree k + 1 move and are left with S′ and T being connected by

a degree n− 1 move, so as long as we have k +1 ≤ n− 1, we are done. That is, for every

pair (S, T ) of tableaux in a degree n fiber, we must show that there is a row of S and a

row of T that differ in at most n − 2 places.

Given such a pair (S, T ), introduce an n × n matrix M where the entries Mij

are the number of entries that row i of S and row j of T agree. Notice that if Mij ≥ 2,

we have rows i in S and j in T that differ in at most n − 2 places and are done.

Suppose that row i of S is (πi(1), . . . , πi(n)). The row sum
∑n

j=1 Mij counts
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the total number of times that πi(j) appears in column j for each j. This is exactly
∑n

k=1 b(k, π(k)). Summing over all rows, we see that every entry of b gets counted its

cardinality number of times. That is,

∑

1≤i,j≤n

Mij =
∑

1≤i,j≤n

b(i, j)2 = ||b||2

Now since each row of b sums to n, we have that ||b||2 ≥ n2, with equality only if

b(i, j) = 1 for all i, j. Notice that if ||b||2 > n2, then one of the Mij must be larger than

1, and we are done.

Therefore, we only have to consider the fiber over b1 =

( 1 1 ... 1
...

...
1 1 ... 1

)

. Elements

of this fiber are tableaux such that every row and every column is a permutation of

{1, . . . , n} (“Latin squares”). Two tableaux are connected by a degree n−1 move if they

have a row in common. We claim that if n > 3, this graph is connected. (Note that for

n = 3, there are two components and a degree 3 move for S3, see Table 2.7.)

For fixed ν ∈ Sn, the set Tν of all tableaux in ρ−1(b1) that have ν as a row is

connected by definition. Form the graph Gn where the vertices are elements ν ∈ Sn and

there is an edge between λ and ν if λ and ν occur in a tableau together. Then if this

graph is connected, the whole fiber over b1 is connected by degree n − 1 moves.

First, we claim that λ and ν occur together in a tableau if and only if λ is

a derangement with respect to ν (i.e., if λ and ν are disjoint from each other). The

derangement condition is clearly necessary. Sufficiency follows from Birkhoff’s theorem:

if λ is a derangement with respect to ν, then the square b1−ρ(λ)−ρ(ν) has non-negative

entries and row and column sums n − 2, therefore, it it the sum of n − 2 permutation

matrices. Thus, Gn is the graph where two permutations are connected by an edge when

they are disjoint.

Now note that [1, 2, . . . , n − 2, n − 1, n] and [3, 4, . . . , n, 1, 2] are connected in

Gn since the second is a cyclic shift of the first. Then, if n > 3, [3, 4, . . . , n, 1, 2] and

[1, 2, . . . , n−2, n, n−1] are also connected. Thus [1, 2, . . . , n] and [1, 2, . . . , n−2, n, n−1]

are connected, so applying transpositions keeps us in the same connected component of

Gn. But Sn is generated by transpositions, so Gn is connected and therefore ρ−1(b1) is

connected by moves of degree n − 1.
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Theorem 2.10 gives rise to the question of whether there exists a Gröbner basis

of degree n − 1 for ISn .

Definition 2.11. Let I be an ideal in m unknowns, and let C[ω] be the equivalence

class of vectors in R
m that give the same Gröbner basis as ω, i.e.,

C[ω] =
{

ω′ ∈ R
m | inω′(g) = inω(g) for all g ∈ G

}

,

where G is the reduced Gröbner basis of I with respect to ω. Then the Gröbner fan of

I, denoted GF (I) is the set of closed cones C[ω] for all ω ∈ R
m.

Remark 2.12. We attempted to find the entire Gröbner fan for n = 4 using the software

packages CaTS [57] and gfan [56]. This computation failed for both programs after

several weeks due to excessive memory usage of over 3 GB. However, before failing, we

were able to calculate 805,671 Gröbner bases with CaTS and 2,973,312 Gröbner bases

with gfan. Every one of these Gröbner bases contained elements of degree 4, in contrast

with the Markov basis of degree 3. Furthermore, our Gröbner basis for S5 contained

degree 5 elements. Therefore, it is possible that the degree n Gröbner basis of [39] is the

Gröbner basis of smallest degree.

While ISn is difficult to compute, it is easy to classify the degree 2 part of the

Markov basis.

Proposition 2.13. Let D2(n) be the number of degree 2 moves, up to symmetry, in a

Markov basis for Sn. Then

D2(n) = D2(n − 1) +

⌊n
2
⌋

∑

k=2

(2k−1 − 1)[qn−2k]

k
∏

i=1

1

1 − qi
,

where [qj](
∑

aiq
i) := aj . For example, D2(9) = 47.

Proof. First assume that all entries of the magic square b are either 1 or 0. Then the

squares with non-trivial ρ−1(b) are those that can be put in a block diagonal form with

k ≥ 2 blocks and each block of size at least 2. Such a magic square has a fiber of size

2k−1, corresponding to choosing, for each block, an orientation of the two permutations

that sum to that block (since the order of the rows in a tableau don’t matter, there
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S5 S4,1 S3,2 S3,1,1 S2,2,1 S2,1,1,1 S1,1,1,1,1

Data 2286 298 459 78 27 7 0
Hypergeometric 2286 298 16 19 10 6 0

Uniform 2286 298 511 672 436 295 25
Bootstrap 2286 303 469 93 37 13 1

Table 2.8: Squared length (divided by 120) of the projection of the APA data into the 7
isotypic subspaces of S5. Also, the averages of this projection for 100 random draws for
three perturbations.

are only k − 1 such choices). Therefore, we need 2k−1 − 1 moves to make such a fiber

connected. It is a standard fact [90, Chapter 1] that the number of partitions of n into

k blocks each of size at least 2 (denoted p2(n; k)) satisfies

∑

n≥0

p2(n; k)qn = q2k
k
∏

i=1

1

1 − qi

If a magic square contains a 2, it can be thought of as coming from D2(n−1) in a unique

way (up to symmetry).

2.6 Statistical analysis of the election data

In order to run a Markov chain fixing f̂(ρ) on data f , we use the Markov basis {g1, . . . , gB}

as calculated above. Then, starting from f , choose i uniformly in {1, 2, . . . , B} and choose

ǫ = ±1 with probability 1/2. If f + ǫgi ≥ 0 (coordinate-wise), the Markov chain moves

to f + ǫgi. Otherwise, the Markov chain stays at f . This gives a symmetric connected

Markov chain on the data sets with a fixed value of f̂(ρ). As such, it has a uniform

stationary distribution. To get a sample from the hypergeometric distribution (2.6), the

Metropolis algorithm or the Gibbs sampler can be used [62].

Given a symmetrized basis, we can still perform a random walk. Pick, at

random, an element g of Sn × Sn. Pick a move from the symmetrized basis at random,

apply g to it (permuting columns and renaming entries), then use the resulting move

in the Markov chain. This again gives a symmetric Markov chain that converges to the

uniform distribution.

In this section, we apply the Markov basis for S5 to analyze Table 2.1. The

second and third rows of Table 2.8 show the average sum of squares for 100 samples from
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Figure 2.1: Distribution of the length of the projection to S3,2 with the Metropolis and
uniform random walks.

the hypergeometric distribution (2.6) (row 2) and from the uniform distribution (row 3)

with f̂(ρ) fixed. Both sets of numbers are based on a Markov chain simulation using a

symmetrized version of the minimal basis. In each case, starting from the original data

set, the chain was run 10,000 steps and the current function recorded. From here, the

chain was run 10,000 further steps, and so on until 100 functions were recorded. While

the running time of 10,000 steps is arbitrary, wide variation in the running time did not

appreciably change the results.

A histogram of the 100 values of the length of the projection into S3,2 under

each distribution is shown in Figure 2.1. These show some of variability but nothing

exceptional. The histograms for the other projections are very similar.

Consider first the hypergeometric distribution leading to row 2 of Table 2.8 and

Figure 2.1. A natural test of goodness of fit of the model (2.5) for the APA data may

be based on the conditional distribution of the squared length of the projection of the

data into S3,2. From the random walk under the null model, this should be about 15±5.

For the actual data, this projection is 459. This gives a definite reason to reject the

null model. Our look at the data projected into S3,2 and the analysis that emerged in

Section 2.2 confirms this conclusion.

In [36], the uniform distribution of the data conditional on a sufficient statistic
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was suggested as an antagonistic alternative to the null hypothesis when the data strongly

rejects a null model. The idea is to help quantify if the data is really far from the null,

or practically close to the null and just rejected because of a small deviation but a large

sample size [36]. From Figure 2.1, we see that the actual projected length 459 is roughly

typical of a pick from the uniform. This affirms the strong rejection of (2.5) and points

to a need to look at the structure of the higher order projection on its own terms.

An appropriate stability analysis was left open in [35]. If the data in Table 2.1

were a sample from a larger population, the sampling variability adds noise to the signal.

How stable is the analysis above to natural stochastic perturbations? One standard

approach is shown in the last row of Table 2.8. This is based on a boot-strap perturbation

of the data in Table 2.1. Here, the votes of all 5972 rankers are put in a hat and a sample

of size 5972 is drawn from the hat with replacement to give a new data set. The sum of

squares decomposition is repeated. This resampling step (from the original population)

was repeated 100 times. The entries in the last row of Table 2.8 show the average squared

length of these projections. We see that they do not vary much from the original sum of

squares. While not reported here, the boot-strap analogue of the second order analysis

in Table 2.8 was quite stable. We conclude that sampling variability is not an important

issue for this example.

2.7 Statistical analysis of an S4 example

In [39] an S4 example was analyzed. However, the data was analyzed using only the uni-

form distribution, which only tells half of the story. The analysis under hypergeometric

sampling gives an important supplement. Briefly, a sample of 2262 German citizens were

asked to rank order the desirability of four political goals:

1. Maintain order;

2. Give people more say in government;

3. Fight rising prices;

4. Protect freedom of speech.
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1234 137 2134 48 3124 330 4123 21
1243 29 2143 23 3142 294 4132 30
1324 309 2314 61 3214 117 4213 29
1342 255 2341 55 3241 69 4231 52
1423 52 2413 33 3412 70 4312 35
1432 93 2431 59 3421 34 4321 27

Table 2.9: The number of German citizens who ranked the four political goals in a given
order.

Rank
Goal 1 2 3 4

1 875 279 914 194
2 746 433 742 341
3 345 773 419 725
4 296 777 187 1002

Table 2.10: First order summary for the S4 ranked data in Table 2.9.

The data appears in Table 2.9 and the first order summary in Table 2.10. The sizes

of the projections for the data and the random walks appear in Table 2.11. We have

corrected a typographical error in the data in [39], the 2431 entry should be 59.

The projection of the data into the second order subspace S2,2 has squared

length 268. The boot-strap analysis (Line 4 in Table 2.11) shows this is stable under

sampling perturbations. The hypergeometric analysis (line 2 of Table 2.11) suggests that

for the specific data, relatively large projections onto the second order space are typical,

even if the first order model holds. This is quite different than the previous example.

Still, the observed 268 is sufficiently much larger than 169 that a look at the second

order projection is warranted. The uniform analysis points to the actual projection

S4 S3,1 S2,2 S2,1,1 S1,1,1,1

Data 462 381 268 49 4
Metropolis 462 381 169 37 8
Uniform 462 381 277 228 80

Bootstrap 462 381 269 56 7

Table 2.11: Length of the projections onto the five isotypic subspaces for the S4 data
and three perturbations.
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being typical, this again suggests a serious look at the second order projection.

Remark 2.14. We note that the software package LattE [28] can be used to count how

many data sets have a given first order summary. For our S4 example (Table 2.9), these

correspond to lattice points inside a convex polytope with 6285 vertices in R
24. LattE

quickly computes that there are 11606690287805167142987310121 (approximately 1028)

elements of N[S4] with the same first order summary as our S4 example. However, LattE

was unable to compute this number for the S5 data (Table 2.1).
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Chapter 3

Toric ideals of homogeneous

phylogenetic models

In this chapter, we consider the fully observed homogeneous phylogenetic model

That is to say, every node of the tree is an observed, binary random variable and the

transition probabilities are given by the same matrix on each edge of the tree. The ideal

of invariants of this model is a toric ideal, returning to a major theme from Chapter 2.

We are able to compute the Gröbner basis and minimal generating set for

this ideal for trees with up to 11 nodes. These are the first non-trivial Gröbner bases

calculations in 211 = 2048 indeterminates. We conjecture that there is a quadratic

Gröbner basis for binary trees, but that generators of degree n are required for certain

non-binary trees on n nodes. The polytopes associated with these toric ideals display

interesting finiteness properties. We describe the polytope for an infinite family of binary

trees and conjecture (based on extensive computations) that there is a universal bound

on the number of vertices of the polytope of a binary tree. This polytope is meaningful

statistically — it solves the problem of parametric inference. Parametric inference solves

the maximum a posteriori inference problem for all model parameters simultaneously.

See [33] for an example of parametric inference applied to the biological problem of

sequence alignment.

It should be noted that since all nodes are observed, the invariant calculations

will not themselves be useful for phylogenetics. Furthermore, the homogeneous model
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is not very biologically relevant. However, the fully observed homogeneous model is

particularly attractive due to the small number of parameters and the toric structure.

The material in this chapter comes from [43].

3.1 Homogeneous phylogenetic models

In this chapter we consider the homogeneous Markov model on a tree T where all tran-

sition matrices are equal, all nodes are binary and observable, and the root has uniform

distribution. We write A =





θ00 θ01

θ10 θ11



 for the transition matrices. Let ρ(v) denote the

parent of v ∈ T .

The probability of observing i at a node v is computed from the parent of v by

P (Xv = i) = θ0iP (Xρ(v) = 0) + θ1iP (Xρ(v) = 1).

We are interested in the algebraic relations satisfied by the joint distribution

pi1i2...in := P (X1 = i1, . . . ,Xn = in).

Writing the joint distribution in terms of the model parameters θ00, θ01, θ10, θ11, we have

pi1i2...in =

n
∏

j=2

θiρ(j)ij (3.1)

where the nodes of the tree are labeled 1 to n starting with the root. That is, the

probability of observing a certain labeling of the tree is the product of the θij that

correspond to the transitions on all edges of the tree. The indeterminates θij parameterize

a toric variety of dimension 4 in R
2n

. We let IT be the corresponding toric ideal, called

the ideal of phylogenetic invariants. In the notation of [98], the toric ideal IT is specified

by the 4 by 2n configuration AT , where the column ai consists of the exponent vector of

the θij in (3.1). We order the rows (θ00, θ01, θ10, θ11). Let PT be the convex hull of the

columns of AT .

We are interested in two questions from [72]. First, which relations on the joint

probabilities pi1...in does the model imply? This problem is solved by giving generators

of the ideal of invariants IT .
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In Section 3.2, we study the generators of this ideal. Our main accomplishment

is the computation of Gröbner and Markov bases for all binary trees with 11 nodes. These

are computations in 2048 indeterminates, which we believe to be the largest number of

indeterminates yet in a Gröbner basis calculation. We also calculate generating sets for

all trees on at most 9 nodes. Based on this evidence, we conjecture that if T is binary,

then the ideal IT has a quadratic generating set. However, our calculations suggest that

relations of degree n are necessary to generate IT for certain trees with n nodes.

Our second goal is to determine, given a labeling of the tree T , if we can identify

parameters θij such that the labeling is the most likely among all labelings. This problem

is solved by computing the normal fan of the toric variety in the sense of [50].

In Section 3.3, we study this normal fan and the polytope PT . Our main result,

Theorem 3.7, is an explicit description of the polytope PT for an infinite family of binary

trees. For this family, PT always has 8 vertices and 6 facets which we characterize. We

also present extensive calculations of PT for various trees and conjecture that there is a

bound on the number of vertices of PT as T ranges over all binary trees.

Example 3.1. Let T be a path with 3 nodes. Then

AT =















2 1 0 0 1 0 0 0

0 1 1 1 0 1 0 0

0 0 1 0 1 1 1 0

0 0 0 1 0 0 1 2















,

the polytope PT is three dimensional with seven vertices and six facets. The toric ideal

of the path of length 3 is generated by 6 binomials

IT = 〈p101 − p010, p001p100 − p000p010,

p011p100 − p001p110, p011p110 − p010p111,

p2
001p111 − p000p

2
011, p2

100p111 − p000p
2
110〉.

3.2 Toric ideals

The toric ideals IT are homogeneous, since all monomials in (3.1) have the same degree

n − 1. Thus they define projective toric varieties YT .
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Recall that a projective toric variety given by a configuration A = (a1, . . . ,ak)

is covered by the affine toric varieties given by A− ai. An affine toric variety defined by

a configuration B is said to be smooth if the semigroup NB is isomorphic to N
r for some

r [99, Lemma 2.2].

Proposition 3.2. The projective toric variety YT of a binary tree T is not smooth.

Proof. Recall that the columns of the configuration AT are indexed by 0/1-labelings of

the tree T . Look at the affine chart IA−a0...0 , where a0...0 corresponds to the all zero tree.

On this chart, write ãi = ai − a0...0. The cone R≥0(A− a0...0) is simplicial, with extreme

rays coming from the following labelings of the tree: let 10 . . . 0 be the tree with a 1 at

the root and zeros everywhere else, 0 . . . 01 be the tree with a 1 at a single leaf and zeros

everywhere else, and 1 . . . 1 be the tree with all ones. That is, three generators of the

semigroup are

ã10...0 = (n − 3, 0, 2, 0) − a0...0 = (−2, 0, 2, 0)

ã0...01 = (n − 2, 1, 0, 0) − a0...0 = (−1, 1, 0, 0)

ã1...1 = (0, 0, 0, n − 1) − a0...0 = (−n + 1, 0, 0, n − 1)

Now it is easy to check that, for example, the point ã∗ = (−n+1, 0, 2, n−3) does not lie in

the semigroup generated by the three previous elements. Furthermore, this point comes

from the labeling of a tree (the tree with all labels one except for 2 sibling leaves, their

parent, and a single other leaf who are labeled zero). Thus it lies in the configuration

A−a0...0, so the semigroup requires at least 4 generators. Therefore, N(A−a0...0) is not

isomorphic to N
3 and so the toric variety YT is not smooth.

Using 4ti2 [53], Gröbner and Markov bases for the ideal IT were computed

for all trees with at most 9 nodes as well as selected trees with 10 and 11 nodes. This

took about 6 weeks of computer time in total on a 2GHz computer. The computations

in 2048 variables (trees with 11 nodes) each took as long as a week and required over 2

GB of memory.

Details about the Markov bases for all binary trees with at most 11 nodes are

shown in Table 3.1. These computations lead us to make the following conjectures.
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Tree Degree #Minimal Max degree
of IT generators of generator

4 4 2

28 79 2

92 441 2

96 561 2

210 2141 2

220 2068 2

210 2266 2

412 7121 2

404 7131 2

400 7137 2

412 7551 2

412 7551 2

404 7561 2

Table 3.1: Degree of IT , number of minimal generators, and maximum degree of a
generator of IT for binary trees.
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Conjecture 3.3. The toric ideal corresponding to a binary tree is generated in degree

2. More generally, if every non-leaf node of the tree has the same number of children d

(for d ≥ 2), the toric ideal is generated in degree 2.

Conjecture 3.4. There exists a quadratic Gröbner basis for the toric ideal of a binary

tree.

Using the Gröbner Walk [24] implementation in magma, we have computed thou-

sands of Gröbner bases for random term orders for the smallest binary trees. It doesn’t

seem to be possible to compute the entire Gröbner fan for these examples with CaTS [57],

but the random computations have yielded some information: Conjecture 3.4 is true for

the binary tree with 5 nodes, in fact, there are at least 4 distinct quadratic Gröbner

bases for this tree. Analysis of these bases lends some optimism towards Conjecture 3.4.

However, for the binary trees on 7 nodes, computation of over 1000 Gröbner bases did

not find a quadratic basis. The best basis found contained quartics and some bases even

contained relations of degree 29.

Another nice family of toric ideals is given by IT for T a path of length n.

Table 3.2 presents data for Markov bases of paths that leads us to conjecture that this

family also has well behaved ideals.

Conjecture 3.5. The toric ideal corresponding to a path is generated in degree 3, with

2n − 4 generators of degree 3 needed.

Unfortunately, the toric ideal of a general tree doesn’t seem to have such simple

structure. For n ≤ 9, the trees with highest degree minimal generators are those of the

form n−2 . These trees require generators of degree n.

3.3 Viterbi polytopes

In this section, we are interested in the following problem. Given any observation

(i1, . . . , in) of the tree, which matrices A = (θij) make pi1...in maximal among the coor-

dinates of the distribution p?
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# of Degree #Minimal Max Number
nodes of IT generators degree of deg 3

3 6 6 3 2
4 19 32 3 4
5 36 102 3 6
6 61 259 3 8
7 90 540 3 10
8 127 1041 3 12
9 168 1842 3 14
10 217 3170 3 16
11 270 5286 3 18

Table 3.2: Degree of IT , size of Markov basis, maximum degree of a minimal generator,
and number of degree 3 generators for paths.

To solve this problem, transform to logarithmic coordinates xij = − log(θij).

Then the condition that pi1...in > pl1...ln for all (l1, . . . ln) ∈ {0, 1}n is translated into the

the linear system of inequalities

xi1i2 + · · · + xiρ(n)in > xl1l2 + · · · + xlρ(n)ln

for all (l1, . . . ln) ∈ {0, 1}n. The set of solutions to these inequalities is a polyhedral

cone. For most values of i1, . . . , in, this cone will be empty. Those sequences i1, . . . , in

for which the cone is maximal are called Viterbi sequences. The collection of the cones,

as (i1, . . . , in) varies, is the normal fan of the polytope PT , where PT is the convex hull

of the columns of AT .

Notice that PT is a polytope in R
4. However, since all the monomials in (3.1)

are of degree n−1, we see that this polytope is actually contained in n−1 times the unit

simplex in R
4. Thus, PT is actually a 3 dimensional polytope. We call PT the Viterbi

polytope.

The polytopes PT show remarkable finiteness properties as T varies. Since PT

is defined as the convex hull of 2n vectors, it would seem that it could have arbitrarily

bad structure. However, as it is contained in n − 1 times the unit simplex, it can be

shown that there are at most O(n1.5) integral points in PT .

Example 3.6. Eric Kuo has shown [58] that if T is a path with n nodes, then PT has

only two combinatorial types for n > 3, depending only on the parity of n. The polytope
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10

01

00

Figure 3.1: The Viterbi polytope of a path with 7 nodes, after projecting onto the first
three coordinates (x00, x01, x10).

for the path with 7 nodes is shown in Figure 3.1. Think of this picture as roughly a

tetrahedron with the vertex corresponding to all 0 → 1 transitions and the vertex with

all 1 → 0 transitions both sliced off. These two inequalities come from the fact that for

a path, the number of 0 → 1 and the number of 1 → 0 transitions can differ by at most

one.

Two facts from Example 3.6 are important to remember. First, the structure

of the polytope is related more to the topology of the tree than the size of the tree.

Second, there is a distinction between even and odd length paths. We call a binary tree

completely odd if the tree has all leaves at an odd distance from the root. For example,

the tree is completely odd.

Theorem 3.7. Let T be a completely odd binary tree with more than three nodes. The

associated polytope PT always has the same combinatorial type with 8 vertices and 6

facets (see Figure 3.2).

Proof. First, we derive six inequalities that are satisfied by any binary tree, deriving a

“universal” polytope for binary trees. Then we show that a completely odd binary tree

has labelings that give us all vertices of the “universal” polytope.
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Thinking of the polytope space as the log space of the parameters θij, we write

R
4 with coordinates b00, b01, b10, b11. Since PT lies in n− 1 times the unit simplex in R

4,

we have b00 + b01 + b10 + b11 = n − 1 and the 4 inequalities bij ≥ 0. We claim that any

binary tree T satisfies two additional inequalities

b00 − b01

2
+ b10 ≤

n + 1

2
, (3.2)

b11 − b10

2
+ b01 ≤

n + 1

2
. (3.3)

We prove (3.2), the second inequality follows by interchanging 1 and 0.

Fix a labeling of the binary tree. We claim that the left hand side of (3.2)

counts the net number of zeros that are “created” while moving down the tree, that is,

it counts the number of leaves that are zero minus one if the root is labeled zero. Pick a

non-leaf of the tree which is labeled “0”. It has two children. If both are “0”, then this

node contributes 2 to b00−b01. If both are “1”, then this node contributes -2 to b00−b01.

If one is “0” and one is “1”, then the node doesn’t contribute. We think of a “0” node

with two “0” children as having created a new zero and a “0” node with two “1” children

as having deleted a zero. Therefore we see that the term (b00 − b01)/2 counts the net

number of zeros created as children of “0” nodes. Similarly, if a non-leaf is labeled “1”,

then its contribution to b10 counts the number of new zeros in the children.

Since there are n+1
2 leaves in a binary tree, there can be at most n+1

2 zeros

created, so (3.2) holds. Notice that the labelings that lie on this facet are exactly those

with a one at the root and all zeros at the leaves.

These six inequalities and the equality b00 + b01 + b10 + b11 = n − 1 define a

three dimensional polytope in R
4. It is straightforward to compute that there are eight

vertices of this polytope:

(n − 1, 0, 0, 0), (n − 3, 0, 2, 0)
(

n − 3

2
,
n + 1

2
, 0, 0

)

,

(

0,
2n

3
,
n − 3

3
, 0

)

(

0,
n − 3

3
,
2n

3
, 0

)

,

(

0, 0,
n + 1

2
,
n − 3

2

)

(0, 2, 0, n − 3), (0, 0, 0, n − 1)
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Six of these vertices occur in any binary tree: a tree with all zeros gives the (n−1, 0, 0, 0)

vertex, a tree with a one at the root and zeros elsewhere gives (n− 3, 0, 2, 0), and a tree

with ones at the leaves and zeros elsewhere gives (n−3
2 , n+1

2 , 0, 0). Interchanging 1 and

0 gives three more vertices. However, the remaining two vertices aren’t obtained by all

binary trees.

The vertex (0, n−3
3 , 2n

3 , 0) lies on the facet defined by (3.2), so we know it must

have a one at the root, all zeros at the leaves, and the labels must alternate going down

the tree since there are no zero to zero or one to one transitions. This means that this

vertex is representable by a labeled tree if and only if the tree has all leaves at an odd

depth from the root. Notice that this implies that n must be divisible by 3 for the tree

to be completely odd. Finally, if n > 3 is odd and divisible by 3, then n ≥ 9 and one

checks that the eight vertices are distinct.

See Figure 3.2 for a picture of the polytope and a Schlegel diagram with de-

scriptions of the labelings on the facets and at the vertices.

In the case where T is binary but not completely odd, the polytope shares 6

vertices with this universal polytope, but the remaining 2 vertices are either not integral

or not realizable. However, the polytope still shares much of the boundary with the

universal polytope, so it is perhaps realistic to expect that the polytope for a general

binary tree behaves well. Table 3.3 shows data from computations for all binary trees

with at most 23 nodes. The maximum number of vertices of PT appears to grow very

slowly with the size of the tree.

Although binary trees seem to generally have polytopes with few vertices, ar-

bitrary trees are not so nice. For example, Figure 3.3 shows a tree with 15 nodes that

has a polytope with 34 vertices.

Table 3.4 shows data for all trees on at most 15 nodes. It appears that the

maximum number of vertices for the polytope of an arbitrary tree of size n grows ap-

proximately as 2n. Notice that the tree with all leaves at depth 1 has PT a tetrahedron,

giving the unique minimum number, 4, of vertices for all trees.

Conjecture 3.8. There is a bound on the number of vertices of PT if T is a binary tree.

However, for an arbitrary tree, the number of vertices of PT is unbounded.
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b01

No 0 → 1

No 1 → 1

No 0 → 0

No 1 → 0

b00

Figure 3.2: The polytope of the completely odd binary tree and a Schlegel diagram of
this polytope with facets and vertices labeled.
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Number Number of Min Max Ave
of nodes binary trees vertices vertices vertices

3 1 4 4 4
5 1 7 7 7
7 2 8 10 9
9 3 8 13 11.33
11 6 10 14 11.66
13 11 11 13 11.91
15 23 8 16 14.35
17 46 12 17 13.82
19 98 10 20 14.65
21 207 8 19 14.8
23 451 10 20 15.6

Table 3.3: Minimum, maximum and average number of vertices of PT over all binary
trees with at most 23 nodes.

Figure 3.3: A tree T with 15 nodes where PT has 34 vertices, 58 edges, and 26 facets.
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Number Number of Min Max Ave
of nodes trees vertices vertices vertices

3 2 4 7 5.5
4 4 4 8 7
5 9 4 11 8
6 20 4 14 9.7
7 48 4 15 10.75
8 115 4 20 12.59
9 286 4 21 13.67
10 719 4 22 15.42
11 1842 4 25 16.60
12 4766 4 28 18.3
13 12486 4 31 19.5
14 32973 4 32 19.75
15 87811 4 34 22.6

Table 3.4: Minimum, maximum and average number of vertices of PT over all trees with
at most 15 nodes

We conclude with a description of an algorithm to quickly compute PT . Notice

that the naive method involves taking the convex hull of 2n points, but this can certainly

be improved, since there are many duplicates. The polytope propagation algorithm of

[71] can be used to calculate PT in polynomial time in the number of nodes. This

powerful algorithm can be used to perform parametric inference for many statistical

models of interest to computational biologists. In our case, the algorithm depends on

the observation that PT can be rewritten roughly as the Minkowski sum of PT1 and PT2 ,

where T1 and T2 are the left and right subtrees of the root (after splitting into 8 subcases

depending on the labels of the root and its children). This can be applied recursively

down the tree to give a polynomial time algorithm.
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Chapter 4

Tree construction using singular

value decomposition

In this chapter, we present a new, statistically consistent algorithm for phyloge-

netic tree construction that uses the algebraic theory of statistical phylogenetic models

as introduced in Section 1.4 and studied in Chapter 3. Our basic tool is Singular Value

Decomposition (SVD) from numerical linear algebra.

Starting with an alignment of n DNA sequences, we show that SVD allows us

to quickly decide whether a split of the taxa occurs in their phylogenetic tree, assuming

only that evolution follows a tree Markov model. Using this fact, we have developed an

algorithm to construct a phylogenetic tree by computing only O(n2) SVDs.

We have implemented this algorithm in C++ using the SVDLIBC library (avail-

able at http://tedlab.mit.edu/∼dr/SVDLIBC/) and have done extensive testing with

simulated and real data. The algorithm is fast in practice on trees with 20–30 taxa.

We begin by describing the general Markov model and then show how to flatten

the joint probability distribution along a partition of the leaves in the tree. We give rank

conditions for the resulting matrix; most notably, we give a set of new rank conditions

that are satisfied by non-splits in the tree. Armed with these rank conditions, we present

the tree-building algorithm, using SVD to calculate how close a matrix is to a certain

rank. Finally, we give experimental results on the behavior of the algorithm with both

simulated and real-life (ENCODE) data. The material in this chapter comes from the

http://tedlab.mit.edu/~dr/SVDLIBC/
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book chapter [44].

4.1 The general Markov model

We assume that evolution follows a tree Markov model, as introduced in Section 1.4,

with evolution acting independently at different sites of the genome. We do not assume

that the transition matrices for the model are stochastic. Furthermore, we do not assume

the existence of a global rate matrix.

This model is called the general Markov model. It is a more general model than

any in the Felsenstein hierarchy [73, pg. 154]. The main results in this chapter therefore

hold no matter what model of evolution one works with.

Under the general dogma that statistical models are algebraic varieties, the

polynomials (called “phylogenetic invariants”) defining the varieties are of great interest.

Phylogenetic invariants have been studied extensively since [59, 22]. Linear invariants for

the Jukes–Cantor model have been used to infer phylogenies on four and five taxa; see

[85]. Sturmfels and Sullivant finished the classification of the invariants for group-based

models [97]; see [21] for an application of these invariants for constructing trees on four

taxa. Invariants for the general Markov model have been studied in [2, 3].

The main problem with invariants is that there are exponentially many poly-

nomials in exponentially many variables to test on exponentially many trees. Because

of this, they are currently considered impractical by many and have only been applied

to small problems. However, we solve the problem of this combinatorial explosion by

only concentrating on invariants which are given by rank conditions on certain matrices,

called “flattenings”.

4.2 Flattenings and rank conditions

Recall that a split {A,B} in a tree is a partition of the leaves obtained by removing an

edge of the tree. We will say that {A,B} is a partition of the set of leaves if it is not

necessarily a split but merely a disjoint partition of the set of leaves into two sets.

Throughout, all trees will be assumed to be binary with n leaves. We let m
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denote the number of states in the alphabet Σ. Usually m = 4 and Σ = {A,C,G, T}

or m = 2 and Σ = {0, 1}. We will write the joint probabilities of an observation on the

leaves as pi1...in . That is, pi1...in is the probability that leaf j is observed to be in state

ij for all j ∈ {1, . . . , n}. We write P for the entire probability distribution.

Although the descriptions of tree-based models in this book all deal with rooted

trees, we will mostly consider unrooted tree models, which are equivalent to them for

the general Markov model; see [3] for details on this technical point. Our tree-building

algorithm constructs an unrooted tree, additional methods would be required to find the

root.

Definition 4.1. A flattening along a partition {A,B} is the m|A| by m|B| matrix where

the rows are indexed by the possible states for the leaves in A and the columns are

indexed by the possible states for the leaves in B. The entries of this matrix are given by

the joint probabilities of observing the given pattern at the leaves. We write FlatA,B(P )

for this matrix.

Example 4.2 (Flattening a partition on 4 taxa). Let T be a tree with 4 leaves and

let m = 4, Σ = {A,C,G,T}. The partition {1, 3}, {2, 4} flattens to the 16 × 16 matrix

Flat{1,3},{2,4}(P ) where the rows are indexed by bases of taxa 1 and 3 and the columns

by bases of taxa 2 and 4:

Flat{1,3},{2,4}(P ) =



























AA AC AG AT CA CC . . .

AA pAAAA pAAAC pAAAG pAAAT pACAA pACAC . . .

AC pAACA pAACC pAACG pAACT pACCA pACCC . . .

AG pAAGA pAAGC pAAGG pAAGT pACGA pACGC . . .

AT pAATA pAATC pAATG pAATT pACTA pACTC . . .

CA pCAAA pCAAC pCAAG pCAAT pCCAA pCCAC . . .
...

...
...

...
...

...
...

...



























.

Next we define a measure of how close a general partition of the leaves is to

being a split. If A is a subset of the leaves of T , we let TA be the subtree induced by the

leaves in A. That is, TA is the minimal set of edges needed to connect the leaves in A.

Definition 4.3. Suppose that {A,B} is a partition of [n]. The distance between the
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partition {A,B} and the nearest split, written e(A,B), is the number of edges that occur

in TA ∩ TB .

Notice that e(A,B) = 0 exactly when {A,B} is a split. Thus e(A,B) gives a

measure of how close {A,B} is to being a split.

Consider TA∩TB as a subtree of TA. Color the nodes in TA∩TB red, the nodes

in TA \(TA∩TB) blue. Say that a node is monochromatic if it and all of its neighbors are

of the same color. We let mono(A) be the number of monochromatic red nodes. That

is:

Definition 4.4. Define mono(A) as the number of nodes in TA ∩ TB that do not have

a node in TA \ (TA ∩ TB) as a neighbor.

See Figure 4.1 for an example of e(A,B) and mono(A). Our main theorem ties

together how close a partition is to being a split with the rank of the flattening associated

to that partition.

Theorem 4.5. Let {A,B} be a partition of [n], let T be a binary, unrooted tree with

leaves labeled by [n], and assume that the joint probability distribution P comes from a

Markov model on T with an alphabet with m letters. Let

P(A,B) = min (e(A,B) + 1 − mono(A), e(A,B) + 1 − mono(B), |A|, |B|) . (4.1)

Then the generic rank of the flattening FlatA,B(P ) is given by mP(A,B).

Proof. We claim that FlatA,B(P ) can be thought of as the joint distribution for a simple

graphical model. Pick all the nodes that are shared by the induced subtrees for A and

B: call this set R. If R is empty, then {A,B} is a split; in that case let R be one of

the vertices of the edge separating A and B. Notice that |R| = e(A,B) + 1. Think

of these vertices as a single hidden random variable, which we will also call R, with

m|R| = me(A,B)+1 states. Group the states of the nodes in A together into one m|A|-

state observed random variable; similarly the nodes in B are grouped into a m|B|-state

random variable. Then create the graphical model with one hidden m|R|-state random

variable and two descendent observed variables with m|A| and m|B| states. Notice that

FlatA,B(P ) is the joint distribution for this model. See Figure 4.1 for an example.
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Figure 4.1: Determining the rank of FlatA,B(P ) where {A,B} is not a split. If A is given
by the 8 dashed leaves and B by the 7 solid leaves, then e(A,B) = 8 (shown in bold)
and FlatA,B(P ) is the joint distribution for a 3-state graphical model where the root R
has m9 states and the descendents A and B have m8 and m7 states, respectively. Here
mono(B) = 4 (indicated by the dots), so the m9 ×m8 matrix MA has rank m9−4 = m5,
which is the rank of FlatA,B(P ).
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Furthermore, the distribution for this simplified model factors as

FlatA,B(P ) = MT
A diag(π(R))MB (4.2)

where π(R) is the distribution of R and MA and MB are the m|R|×m|A| and m|R|×m|B|

transition matrices. That is, the (i, j)th entry of MA is the probability of transitioning

from state i at the root R to state j at A.

To say the tree distribution factors as (4.2) just means that

Prob(A = i, B = j) =
∑

k

Prob(R = k) Prob(A = i | R = k) Prob(B = j | R = k).

Notice that all of the terms in this expression can be written as polynomials in

the edge parameters (after choosing a rooting). Therefore the rank of FlatA,B(P ) is at

most mmin(|R|,|A|,|B|).

However, the matrices in this factorization do not necessarily have full rank.

For example, if one of the nodes in R has only neighbors that are also in R, then the

m|R|×m|A| transition matrices from R to A have many rows that are the same, since the

transition from a state of R to a state of A does not depend on the value of this one node.

More generally, if a node of R has no neighbors in TA \ (TA ∩TB), then the entries of the

transition matrix MA do not depend on the value of this node. But the entries do depend

on the values of all other nodes of R (that is, those with neighbors in TA \ (TA ∩ TB)).

So R really behaves like a model with m|R|−mono(A) states on the transition to A and

m|R|−mono(B) states for the transition to B. There are enough parameters so that after

canceling out these equal rows, all other rows are linearly independent. Therefore, the

rank of MA is min
(

m|R|−mono(A),m|A|
)

(and similarly for MB).

Remark 4.6. We note that P(A,B) is related to the parsimony score for the tree with

leaves in A in state 0 and leaves in B in state 1. First notice that all the nodes in

TA \ (TA ∩ TB) need to be in state 0 and the nodes in TB \ (TA ∩ TB) need to be in state

1 to obtain a parsimonious tree. Therefore, we are just left with the nodes in TA ∩TB to

decide. If we set all the nodes in TA ∩TB to be in state 1, then e(A,B)+1−mono(A) is

the parsimony score, since this quantity is the number of nodes of TA ∩ TB that have a

node in TA \ (TA ∩TB) as a neighbor. The case where the nodes in TA∩TB are in state 0
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gives parsimony score e(A,B) + 1−mono(B). In many cases, one of these two labelings

is the most parsiminous. However, there are trees which have a parsimony score which

is lower than P(A,B). For example, trees with large clusters of monochromatic nodes

for both A and B will tend to have low parsimony scores but relatively large P(A,B).

Theorem 4.5 gives rise to a well-known corollary upon noticing that if {A,B}

is a split, then e(A,B) = 0 (see [3], for example).

Corollary 4.7. If {A,B} is a split in the tree, the generic rank of FlatA,B(P ) is m.

A partial converse of Corollary 4.7 will be used later.

Corollary 4.8. If {A,B} is not a split in the tree, and we have |A|, |B| ≥ 2 then the

generic rank of FlatA,B(P ) is at least m2.

Proof. Since we have |A|, |B| ≥ 2, we must show that the two other exponents in (4.1)

are at least 2. That is, we have to show that e(A,B) + 1 − mono(A) ≥ 2 (the case for

B is symmetric). This term counts the number of nodes in TA ∩ TB that are directly

connected to a part of TA outside of TA ∩ TB. Since {A,B} is not a split, we know that

|TA ∩ TB | = e(A,B) + 1 ≥ 2. Consider TA ∩ TB as a subtree with at least 2 nodes of TA.

The only way for all but one of these nodes to be isolated from the rest of the tree is to

have the two consist of a leaf and its parent. However, this is impossible since {A,B} is

a disjoint partition of the set of leaves, so TA ∩ TB contains no leaves.

Example 4.9. In Example 4.2, the 16 × 16 matrix Flat{1,3},{2,4}(P ) has rank 4 if the

split {{1, 3}, {2, 4}} occurs in the tree, otherwise, it has rank 16.

In fact, if m = 2, it has recently been shown [4] that the rank conditions in

Corollary 4.7 generate the ideal of invariants for the general Markov model. However,

they do not suffice if m = 4, since in that case a polynomial of degree 9 lies in the ideal

of invariants (see [95, 51]) but this polynomial is not generated by the degree 5 rank

conditions (see [60]).

4.3 Singular value decomposition

Singular Value Decomposition provides a method to compute the distance between a

matrix and the nearest rank k matrix. In this section, we briefly introduce the basic
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properties of SVD for real matrices. See [30] for a thorough treatment.

Definition 4.10. A singular value decomposition of a m × n matrix A (with m ≥ n)

is a factorization A = UΣV T where U is m × n and satisfies UTU = I, V is n × n and

satisfies V TV = I and Σ = diag(σ1, σ2, . . . , σn), where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 are called

the singular values of A.

Definition 4.11. Let aij be the (i, j)th entry of A. The Frobenius norm, written ‖A‖F,

is the root-sum-of-squares norm on R
m·n. That is,

‖A‖F =
√

∑

a2
ij .

The L2 norm (or operator norm), written ‖A‖2, is given by

‖A‖2 = max
x∈R

n

x 6=0

{

‖Ax‖

‖x‖

}

,

where ‖x‖ is the usual root-sum-of-squares vector norm.

The following is Theorem 3.3 of [30]:

Theorem 4.12. The distance from A to the nearest rank k matrix is

min
Rank(B)=k

‖A − B‖F =

√

√

√

√

m
∑

i=k+1

σ2
i

in the Frobenius norm and

min
Rank(B)=k

‖A − B‖2 = σk+1

in the L2 norm.

One way of computing the singular values is to compute the eigenvalues of

ATA; the singular values are the square roots of these eigenvalues. Therefore, general

techniques for solving the real symmetric eigenvalue problem can be used to compute

the SVD. These various methods, both iterative and direct, are implemented by many

software packages for either sparse or general matrices. We will discuss the computational

issues with SVD after we describe how to use it to construct phylogenetic trees.
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4.4 Tree-construction algorithm

Now that we know how to tell how close a matrix is to being of a certain rank, we can test

whether a given split comes from the underlying tree or not by using the SVD to tell how

close a flattening matrix is to being rank m. However, since there are exponentially many

possible splits, we must carefully search through this space. Following a suggestion by S.

Snir, we do this by building the tree bottom up, at each step joining cherries together,

in a method reminiscent of neighbor-joining.

It is an interesting open question whether the additional information in Theo-

rem 4.5 about non-splits that are almost splits can be harnessed to produce an improved

algorithm.

Algorithm 4.13 (Tree construction with SVD).

Input: A multiple alignment of genomic data from n species, from the alphabet Σ with

m states.

Output: An unrooted binary tree with n leaves labeled by the species.

Initialization: Compute empirical probabilities pi1...in . That is, count occurrences of

each possible column of the alignment, ignoring columns with characters not in Σ. Store

the results in a sparse format.

Loop: For k from n down to 4, perform the following steps.

For each of the
(k
2

)

pairs of species compute the SVD for the split {{pair},

{other k − 2 species}}. Pick the pair whose flattening is closest to rank m according to

the Frobenius norm and join this pair together in the tree. That is, consider this pair as

a single element when picking pairs at the next step.

Proposition 4.14. Algorithm 4.13 runs in time O(n3L4) for an input of length L for

n species.

Proof. Notice that although each flattening is of exponential size (i.e., of size m|A|×m|B|),

these matrices must be very sparse. If an alignment is of length L, at most L entries

of the flattening are non-zero. Furthermore, while constructing the flattening, we can

throw out all rows and columns which consist of all zeros. This operation does not take

any additional time beyond the O(nL) time it takes to construct the flattening and it
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does not change the singular value decomposition. Computing exactly all singular values

of an α × β matrix takes O(α2β + αβ2) time (see [30]). In our case, α, β ≤ L, so this

gives a factor of O(L3).

Finally, we need to compute O(n2) SVDs. At the first step, we compute an SVD
(n
2

)

times. At each subsequent step, we only need to compute those splits involving the

pair that we just joined together. Thus we compute (n−2)+(n−3)+ · · ·+3 =
(

n−1
2

)

−3

total SVDs after the first step for
(n
2

)

+
(n−1

2

)

− 3 = (n − 1)2 − 3 SVD computations in

total.

Proposition 4.14 shows that our algorithm runs in polynomial time in the input

size. Although the exponents in the polynomials are fairly large, there is some cause for

optimism. Lanczos iterative methods (cf. Chapter 7 of [30]) allow singular values to be

computed iteratively, one at a time, starting with the largest. Therefore we don’t need

to compute all singular values, only those which are larger than some error bound (all

singular values could be computed to break ties, if necessary). These iterative methods

run much faster than exact methods. However, it is an open question about how large

L must be as a function of n in order to reliably construct the tree using this method —

it may turn out that L must be exponential in n.

Since we will be comparing the SVD from different sized splits, we need to

compute distances in the Frobenius norm, which does not change as the dimensions of

the matrices change (as long as the number of entries is constant). This means that we

should compute all singular values. But in practice, the singular values typically decrease

very quickly, so it suffices to compute only the largest singular values to estimate the

Frobenius norm to good accuracy.

By exploiting the sparsity and only computing singular values until they be-

come sufficiently small, we find that we are able to very quickly compute the SVD for

flattenings coming from trees with at most 31 leaves with binary data (m = 2) and up

to 15 leaves with DNA data (m = 4). This limitation is due to limits on the size of array

indices in SVDLIBC and can probably be exceeded. Furthermore, there are approximation

algorithms for SVD that could possibly make very large problems practical [49].

Theorem 4.15. Algorithm 4.13 is statistically consistent. That is, as the probability
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Figure 4.2: The 6-taxa tree constructed in Example 4.16.

distribution converges to a distribution that comes from the general Markov model on a

binary tree T , the probability that Algorithm 4.13 outputs T goes to 1.

Proof. We must show that the algorithm picks a correct split at each step; that is, as

the empirical distribution approaches the true distribution, the probability of choosing a

bad split goes to zero. By Corollary 4.7, we see that a true split will lead to a flattening

that approaches a rank m matrix, while Corollary 4.8 shows that other partitions will

approach a matrix of rank at least m2 (except for partitions where one set contains only

one element; however, these are never considered in the algorithm). Therefore, as the

empirical distribution approaches the true one, the distance of a split from rank m will

go to zero while the distance from rank m of a non-split will not.

Example 4.16. We begin with an alignment of DNA data of length 1000 for 6 species,

labeled 1, . . . , 6, simulated from the tree in Figure 4.2 with all branch lengths equal to

0.1. For the first step, we look at all pairs of the 6 species. The score column is the

distance in the Frobenius norm from the flattening to the nearest rank 4 matrix:

Partition Score

2 3 | 1 4 5 6 5.8374

5 6 | 1 2 3 4 6.5292

1 2 | 3 4 5 6 20.4385

1 3 | 2 4 5 6 20.5153

4 6 | 1 2 3 5 23.1477

4 5 | 1 2 3 6 23.3001

1 4 | 2 3 5 6 44.9313
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3 4 | 1 2 5 6 52.1283

2 4 | 1 3 5 6 52.6763

1 6 | 2 3 4 5 52.9438

1 5 | 2 3 4 6 53.1727

3 6 | 1 2 4 5 59.5006

3 5 | 1 2 4 6 59.7909

2 6 | 1 3 4 5 59.9546

2 5 | 1 3 4 6 60.3253

picked split 1 4 5 6 | 2 3

tree is 1 4 5 6 (2,3)

After the first step, we see that the split {{2, 3}, {1, 4, 5, 6}} is the best, so

we join nodes 2 and 3 together in the tree and continue. Notice that the scores of the

partitions roughly correspond to how close they are to being splits:

Partition Score

1 2 3 | 4 5 6 5.8534

5 6 | 1 2 3 4 6.5292

4 6 | 1 2 3 5 23.1477

4 5 | 1 2 3 6 23.3001

1 4 | 2 3 5 6 44.9313

2 3 4 | 1 5 6 45.1427

1 6 | 2 3 4 5 52.9438

2 3 6 | 1 4 5 53.0300

1 5 | 2 3 4 6 53.1727

2 3 5 | 1 4 6 53.3838

picked split 1 2 3 | 4 5 6

tree is 4 5 6 (1,(2,3))

After the second step, we join node 1 to the {2, 3} cherry and continue:

Partition Score

5 6 | 1 2 3 4 6.5292

4 6 | 1 2 3 5 23.1477

4 5 | 1 2 3 6 23.3001

picked split 1 2 3 4 | 5 6

tree is 4 (1,(2,3)) (5,6)

Final tree is (4,(1,(2,3)),(5,6))

We have found the last cherry, leaving us with 3 remaining groups which we join together

to form an unrooted tree.
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Figure 4.3: The eight-taxa tree used for simulations with (a, b) = (0.01, 0.07) and
(0.02, 0.19).

4.5 Building trees with simulated data

The idea of simulation is that we first pick a tree and simulate a model on that tree

to obtain aligned sequence data. Then we build a tree using Algorithm 4.13 and other

methods from that data and compare the answers to the original tree.

We used the program seq-gen [78] to simulate data of various lengths for the

tree in Figure 4.3 with the two sets of branch lengths given in Figure 4.3. This tree was

chosen as a particularly difficult tree [96, 70].

We simulated DNA data under the general reversible model (the most general

model supported by seq-gen). Random numbers uniformly distributed between 1 and

2 were chosen on each run for the six rate matrix parameters. The root frequencies were

all set to 1/4.

Next, the data was collapsed to binary data (that is, A and G were identified,

similarly C and T). We used binary data instead of DNA data because of numerical

instability with SVD using the much larger matrices from the DNA data. It should be

noted that Algorithm 4.13 performed better on binary data than on DNA data. This

may be due to the instability, but it may also be because the rank conditions define the

entire ideal for binary data.
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Figure 4.4: Percentage of trees reconstructed correctly (for the 8-taxa tree with branch
lengths (a, b) = (0.01, 0.07)) using our SVD algorithm and two PHYLIP packages.

We ran all tests using our Algorithm 4.13 as well as two algorithms from the

PHYLIP package [47]: neighbor-joining and a maximum likelihood algorithm (dnaml).

We used Jukes–Cantor distance estimation for neighbor-joining and the default settings

for dnaml. All three algorithms took approximately the same amount of time, except for

dnaml, which slowed down considerably for long sequences.

Figures 4.4 and 4.5 show the results of the simulations. Each algorithm was run

1000 times for each tree and sequence length. While SVD performed slightly worse than

the others, it showed very comparable behavior. It should be noted that SVD constructs

trees according to a much more general model than the other two methods, so it should

be expected to have a higher variance.

4.6 Building trees with real data

For data, we use the October 2004 freeze of the ENCODE alignments. For detailed

information on these, see [26] and Chapter 5.
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Figure 4.5: Percentage of trees reconstructed correctly (for the 8-taxa tree with branch
lengths (a, b) = (0.02, 0.19)) using our SVD algorithm and two PHYLIP packages.
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SVD dnaml

Ave. distance % correct Ave. distance % correct

All 2.06 5.8 3.29 2.9
Gene 1.93 10.3 3.21 0.0
Exon 2.43 21.4 3.0 3.5

Table 4.1: Comparison of the SVD algorithm and dnaml on data from the ENCODE
project. Distance between trees is given by the symmetric distance, % correct gives the
percentage of the regions which had the correct tree reconstructed.

As in [1], we restricted our attention to 8 species: human, chimp, galago, mouse,

rat, cow, dog, and chicken. We processed each of the 44 ENCODE regions to obtain

3 data sets. First, for each region, all of the ungapped columns were chosen. Second,

within each region, all ungapped columns that corresponded to RefSeq annotated human

genes were chosen. Third, we restricted even further to only the human exons within

the genes. Bins without all 8 species and bins with less than 100 ungapped positions in

the desired class were removed from consideration. This left us with 33 regions for the

entire alignment, and 28 for both the gene and exon regions, of lengths between 302 and

over 100000 base pairs. See [1] for a more thorough discussion of these data sets.

As is discussed in [1], tree construction methods that use genomic data usually

misplace the rodents on the tree. See Figure 4.6 for the correct tree and the tree with

the rodents misplaced. The reasons for this are not entirely known, but it could be be-

cause tree construction methods generally assume the existence of a global rate matrix

for all the species. However, rat and mouse have mutated faster than the other species.

Our method does not assume anything about the rate matrix and thus is promising

for situations where additional assumptions beyond the Markov process of evolution at

independent sites are not feasible. In fact, Table 4.1 shows that our algorithm performs

better than dnaml on the ENCODE data sets. Note that the measure used is the sym-

metric distance on trees, which counts the number of splits present in one tree that aren’t

present in the other. While neither algorithm constructed the correct tree a majority of

the time, the SVD algorithm came much closer on average and constructed the correct

tree much more often than dnaml, which almost never did (see Figure 4.6 for the correct

tree and a common mistake).



64

b

b

b

b

b

b

Human

b

Chimp

b

Galago

b

b

Mouse

b

Rat

b

b

Dog

b

Cow

b

Chicken

b

b

b

b

b

b

Human

b

Chimp

b

Galago

b

b

Dog

b

Cow

b

b

Mouse

b

Rat

b

Chicken
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(Bottom) The tree commonly constructed from genomic data. Note the position of the
rodent clade further up in the tree.
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Chapter 5

Ultra-conserved elements in

vertebrate and fly genomes

Ultra-conserved elements in an alignment of multiple genomes are consecutive

nucleotides that are in perfect agreement across all the genomes. In this chapter, we

examine ultra-conserved elements in aligned vertebrate and fly genomes. In Section 5.1,

we describe the selected species and alignments. In Section 5.2, we give descriptive

statistics of ultra-conserved elements, and in Section 5.3 we explain their biological rel-

evance. Finally, in Section 5.4 we use the phylogenetic models introduced in Chapter 1

and studied in Chapters 3 and 4 to show that the existence of ultra-conserved elements

is highly improbable in neutrally evolving regions.

The results in this chapter come from a book chapter [40] written with Mathias

Drton and Garmay Leung. Many of our results mirror those of previous studies. How-

ever, these studies have considered long stretches of perfectly conserved regions across

shorter evolutionary distances [14], or aligned regions above some relatively high thresh-

old level of conservation [17, 84, 106]. We have focused on ultra-conserved elements

across larger evolutionary distances. As a result, we have not captured all regions con-

taining high levels of conservation, but have identified only those regions that appear to

be under the most stringent evolutionary constraints.
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5.1 The data

Our analyses of ultra-conserved elements are based on multiple sequence alignments

produced by MAVID [18]. Prior to the alignment of multiple genomes, homology mappings

(from Mercator [32]) group into bins genomic regions that are anchored together by

neighboring homologous exons. A multiple sequence alignment is then produced for each

of these alignment bins. MAVID is a global multiple alignment program, and therefore

homologous regions with more than one homologous hit to another genome may not be

found aligned together. Table 5.1 shows an example of Mercator’s output for a single

region along with the beginning of the resulting MAVID multiple sequence alignment.

Species Chrom. Start End Alignment

Dog chrX 752057 864487 + A----AACCAAA---------

Chicken chr1 122119382 122708162 − TGCTGAGCTAAAGATCAGGCT

Zebra fish chr9 19018916 19198136 + ------ATGCAACATGCTTCT

Puffer fish chr2 7428614 7525502 + ---TAGATGGCAGACGATGCT

Fugu fish asm1287 21187 82482 + ---TCAAGGG-----------

Table 5.1: Mercator output for a single bin, giving the position and orientation on
the chromosome. Notice that the Fugu fish genome has not been fully assembled into
chromosomes.

The vertebrate dataset consists of 10,279 bins over 9 genomes (Table 5.2). A

total of 4,368 bins (42.5%) contain alignments across all 9 species. The evolutionary

relationships among these species (which first diverged about 450 million years ago) are

shown in Figure 5.1. With the exception of the probability calculations in phylogenetic

tree models, our subsequent findings on ultra-conserved elements do not depend on the

form of this tree.

The fruit fly dataset consists of 8 Drosophila genomes (Table 5.3). Of the 3,731

alignment bins, 2,985 (80.0%) contain all 8 species, which reflects the smaller degree of

evolutionary divergence. A phylogenetic tree for these 8 species, which diverged at least

45 million years ago, is shown in Figure 5.2.

The pilot phase of the ENCODE project [26] provides an additional dataset

of vertebrate sequences homologous to 44 regions of the human genome. There are

14 manually selected regions of particular biological interest and 30 randomly selected
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Species Genome Size Genome Release Date

Zebra fish (Danio rerio) 1.47 Gbp 11/27/2003
Fugu fish (Takifugu rubripes) 0.26 Gbp 04/02/2003
Puffer fish (Tetraodon nigroviridis) 0.39 Gbp 02/01/2004
Dog (Canis familiaris) 2.38 Gbp 07/14/2004
Human (Homo sapiens) 2.98 Gbp 07/01/2003
Chimp (Pan troglogytes) 4.21 Gbp 11/13/2003
Mouse (Mus musculus) 2.85 Gbp 05/01/2004
Rat (Rattus norvegicus) 2.79 Gbp 06/19/2003
Chicken (Gallus gallus) 1.12 Gbp 02/24/2004

Table 5.2: Genomes in the nine-vertebrate alignment with size given in billion base pairs.
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Figure 5.1: Phylogenetic tree for whole genome alignment of 9 vertebrates.
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Species Genome Size Genome Release Date

D. melanogaster 118 Mbp 04/21/2004
D. simulans 119 Mbp 08/29/2004
D. yakuba 177 Mbp 04/07/2004
D. erecta 114 Mbp 10/28/2004
D. ananassae 136 Mbp 12/06/2004
D. pseudoobscura 125 Mbp 08/28/2003
D. virilis 152 Mbp 10/29/2004
D. mojavensis 177 Mbp 12/06/2004

Table 5.3: Genomes in the eight-Drosophila alignment with size given in million base
pairs.
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Figure 5.2: Phylogenetic tree for whole genome alignment of 8 Drosophila species.



69

regions with varying degrees of non-exonic conservation and gene density. Each manually

selected region consists of 0.5–1.9 Mbp, while each randomly selected region is 0.5 Mbp

in length. This gives a total of about 30 Mbp, approximately 1% of the human genome.

Varying with the region under consideration, a subset of the following 11 species

is aligned along with the human genome in the preliminary October 2004 freeze: chimp,

baboon (Papiocynocephalus anubis), marmoset (Callithrix jacchus), galago (Otolemur

garnettii), mouse, rat, dog, armadillo (Dasypus novemcintus), platypus (Ornithorhynchus

anatinus), and chicken. This collection of species lacks the three fish of the nine-

vertebrate alignment. Armadillo and platypus sequences are only available for the first

manually picked ENCODE region, and sequences for every region are only available for

human, mouse, rat, dog and chicken. The number of species available for each region

varies between 6 and 11 for manually selected regions, and between 8 and 10 for ran-

domly selected regions. For each region, Shuffle-LAGAN [20] was applied between the

human sequence and each of the other available sequences to account for rearrangements.

Based on these re-shuffled sequences, a multiple sequence alignment for each region was

produced with MAVID. The three sets of multiple alignments are available for download

at http://bio.math.berkeley.edu/ascb/chapter22/.

5.2 Ultra-conserved elements

A position in a multiple alignment is ultra-conserved if for all species the same nucleotide

appears in the position. An ultra-conserved element of length ℓ is a sequence of consecu-

tive ultra-conserved positions (n, n+1, . . . , n+ ℓ− 1) such that positions n− 1 and n+ ℓ

are not ultra-conserved.

Example 5.1. Consider a subset of length 24 of a three-genome alignment:

G--ACCCAATAGCACCTGTTGCGG

CGCTCTCCA---CACCTGTTCCGG

CATTCT---------CTGTTTTGG

* ***** **

where ultra-conserved positions are marked by a star *. This alignment contains three

ultra-conserved elements, one of length 1 in position 5, one of length 5 covering positions

16–20, and one of length 2 in positions 23–24.

http://bio.math.berkeley.edu/ascb/chapter22/
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5.2.1 Nine-vertebrate alignment

We scanned the entire nine-vertebrate alignment described in Section 5.1 and extracted

1,513,176 ultra-conserved elements, whose lengths are illustrated in Figure 5.3. The

median and the mean length of an ultra-conserved element is equal to 2 and 1.918,

respectively.

We will focus on the 237 ultra-conserved elements of length at least 20, covering

6,569 bp in sum. These 237 elements are clustered together; they are only found in 113 of

the 4,368 bins containing all 9 species. The length distribution is heavily skewed toward

shorter sequences as seen in Figure 5.3, with 75.5% of these regions shorter than 30 bp

and only 10 regions longer than 50 bp.

The longest ultra-conserved element in the alignment is 125 bp long:

CTCAGCTTGT CTGATCATTT ATCCATAATT AGAAAATTAA TATTTTAGAT GGCGCTATGA

TGAACCCATT ATGGTGATGG GCCCCGATAT CAATTATAAC TTCAATTTCA ATTTCACTTA

CAGCC.

The next-longest ultra-conserved elements are two elements of length 85, followed by one

element for each one of the lengths 81, 66, 62, 60, 59, 58, and 56. In particular, there is

exactly one ultra-conserved element of length 42, which is the “meaning of life” element

discussed in [74].
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Figure 5.3: Frequencies of vertebrate ultra-conserved elements (log10-scale).

A number of the ultra-conserved elements are separated only by a few (less

than 10), ungapped, intervening positions. In 18 cases, there is a single intervening
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position. Typically, these positions are nearly ultra-conserved, and display differences

only between the fish and the other species. Collapsing the ultra-conserved elements

separated by fewer than 10 bases reduces the number of ultra-conserved elements to 209,

increases the base coverage to 6,636 bp, and brings the total number of regions greater

than 50 bp in length to 26.

In the human genome, the GC-ratio (proportion of G and C among all nucleotides)

is 41.0%. The ultra-conserved elements are slightly more AT-rich; for the 237 elements

of length 20 or longer, the GC-ratio is 35.8%. However, GC-content and local sequence

characteristics were not enough to identify ultra-conserved regions using data from only

one genome.

5.2.2 ENCODE alignment

The 44 ENCODE regions contain 139,043 ultra-conserved elements, 524 of which are

longer than 20 bp. These long elements cover 17,823 bp. By base coverage, 73.5% of

the long elements are found in the manually chosen regions. The longest one is in region

ENm012, of length 169 and consists of the DNA sequence:

AAGTGCTTTG TGAGTTTGTC ACCAATGATA ATTTAGATAG AGGCTCATTA CTGAACATCA

CAACACTTTA AAAACCTTTC GCCTTCATAC AGGAGAATAA AGGACTATTT TAATGGCAAG

GTTCTTTTGT GTTCCACTGA AAAATTCAAT CAAGACAAAA CCTCATTGA.

This sequence does not contain a subsequence of length 20 or longer that is ultra-

conserved in the nine-vertebrate alignment, but the 169 bp are also ultra-conserved

in the nine-vertebrate alignment if the three fish are excluded from consideration. The

only overlap between the nine-vertebrate and ENCODE ultra-conserved elements occurs

in the regions ENm012 and ENm005, where there are 3 elements that are extensions of

ultra-conserved elements in the nine-vertebrate alignment.

Table 5.4 shows the number of species aligned in the 44 ENCODE alignments

and the respective five longest ultra-conserved elements that are of length 20 or larger.

Omitted randomly selected regions do not contain any ultra-conserved elements of length

at least 20.
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Manually selected Randomly selected

Region Spec. Ultra-lengths Region Spec. Ultra-lengths

ENm001 11 28, 27, 23, 202 ENr122 9 22
ENm002 8 39, 28, 27, 264 ENr213 9 30, 27, 26, 24, 232

ENm003 9 38, 282, 26, 252 ENr221 10 362, 322, 29
ENm004 8 35, 262, 25, 20 ENr222 10 29, 22
ENm005 10 114, 62, 38, 34, 32 ENr231 8 26, 23, 20
ENm006 8 − ENr232 8 26, 25, 20
ENm007 6 − ENr233 9 25, 24, 20
ENm008 9 23, 22 ENr311 10 42, 31, 25, 21
ENm009 10 − ENr312 9 60, 31, 22, 204

ENm010 8 86, 68, 63, 61, 602 ENr313 9 27
ENm011 7 − ENr321 10 68, 44, 38, 37, 35
ENm012 9 169, 159, 1252 , 123 ENr322 9 126, 80, 79, 61, 55
ENm013 10 30, 26, 23, 22 ENr323 8 53, 50, 45, 42, 29
ENm014 10 412, 39, 262 ENr331 9 26

ENr332 10 26
ENr334 8 79, 50, 44, 37, 32

Table 5.4: Number of species and lengths of ultra-conserved elements in ENCODE align-
ments. Subindices indicate multiple occurrences.

5.2.3 Eight-Drosophila alignment

There are 5,591,547 ultra-conserved elements in the Drosophila dataset with 1,705 el-

ements at least 50 bp long and the longest of length 209 bp. We focused on the 255

Drosophila ultra-conserved elements of length at least 75 bp, covering 23,567 bp total.

These regions are also found clustered together, occurring over 163 bins out of the 2,985

bins with all 8 species aligned together. The shortest distance between consecutive ultra-

conserved elements is 130 bp, and therefore regions were not collapsed for this dataset.

The mean and median length of ultra-conserved elements are 2.605 and 2, respectively.

The length distribution of all ultra-conserved elements is shown in Figure 5.4. This set

of ultra-conserved elements is also somewhat more AT-rich, with a GC-ratio of 38.8% (for

those elements of length at least 75 bp) compared with a GC-ratio of 42.4% across the

entire D. melanogaster genome.
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Figure 5.4: Frequencies of Drosophila ultra-conserved elements (log10-scale).

5.3 Biology of ultra-conserved elements

5.3.1 Nine-vertebrate alignment

Using the UCSC genome browser annotations of known genes for the July 2003 (hg16)

release of the human genome, we investigated which ultra-conserved elements overlap

known functional regions. Intragenic regions cover 62.6% of the bases of the 209 col-

lapsed ultra-conserved elements described in Section 5.2.1. However, intragenic coverage

increases to 67.6% for short elements (less than 30 bp) and drops to 56.3% for longer

elements (at least 30 bp), as shown in Figures 5.5(a) and 5.5(b). While shorter ultra-

conserved elements tend to correspond to exons, longer ones are generally associated with

introns and unannotated regions. Nine ultra-conserved elements cover a total of 306 bp

in the intronic regions of POLA, the alpha catalytic subunit of DNA polymerase. Six

other genes are associated with more than 100 bp of ultra-conserved elements. Four of

these genes are transcription factors involved in development (SOX6, FOXP2, DACH1,

TCF7L2 ). In fact, elements near DACH that were highly conserved between human

and mouse and also present in fish species have been shown to be DACH enhancers; see

[68].

Among the 237 uncollapsed ultra-conserved elements of length at least 20, 151

are in intragenic regions of 96 genes. The remaining 86 elements did not overlap any

annotated gene. However, by grouping together elements that have the same upstream

and downstream flanking genes, there are only 27 super-regions to consider, with 51



74

IntronsExons

UTRs
Unannotated

(a) 150 elements ≥ 20 and < 30 bp
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Figure 5.5: Functional base coverage of collapsed vertebrate ultra-conserved elements
based on annotations of known human genes.

unique flanking genes. There are 6 super-regions with at least 99 bp overlapping with

ultra-conserved elements. At least one of the flanking genes for each of these 6 super-

regions is a transcription factor located 1–314 kb away (IRX3, IRX5, IRX6, HOXD13,

DMRT1, DMRT3, FOXD3, TFEC ). The overall average distance to the closest flanking

gene on either side is 138 kb and ranges from 312 bp to 1.2 Mbp.

It is a natural question whether the genes near or overlapping ultra-conserved

elements tend to code for similar proteins. We divided the set of 96 genes with ultra-

conserved overlap into 3 groups based on where in the gene the overlap occurred: exon,

intron or untranslated region (UTR). If ultra-conserved elements overlap more than one

type of genic region, then the gene is assigned to each of the appropriate groups. The

51 genes flanking ultra-conserved elements in unannotated regions form a fourth group

of genes.

The Gene Ontology (GO) Consortium (http://www.geneontology.org) pro-

vides annotations for genes with respect to the molecular function of their gene products,

the associated biological processes, and their cellular localization [5]. For example, the

human gene SOX6 is annotated for biological process as being involved in cardioblast

differentiation and DNA-dependent regulation of transcription. Mathematically, each of

the three ontologies can be considered as a partially ordered set (poset) in which the cat-

egories are ordered from most to least specific. For example, cardioblast differentiation

is more specific than cardiac cell differentiation, which in turn is more specific than both

cell differentiation and embryonic heart tube development. If a gene possesses a certain

http://www.geneontology.org
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annotation, it must also possess all more general annotations; therefore GO consists of

a map from the set of genes to order ideals in the three posets. We propose that this

mathematical structure is important for analyzing the GO project.

In this study, we only considered molecular function and biological process an-

notations. These annotations are available for 46 of the 54 genes with exonic overlap, for

all of the 28 with intronic overlap, for 14 of the 20 with UTR overlap, and for 30 of the

51 genes flanking unannotated elements. Considering one GO annotation and one of the

4 gene groups at a time, we counted how many of the genes in the group are associated

with the considered annotation. Using counts of how often this annotation occurs among

all proteins found in Release 4.1 of the Uniprot database (http://www.uniprot.org),

we computed a p-value from Fisher’s exact test for independence of association with the

annotation and affiliation with the considered gene group. Annotations associated with

at least 3 genes in a group and with an unadjusted p-value smaller than 3.0 ·10−2 are re-

ported in Table 5.5. DNA-dependent regulation of transcription and transcription factor

activity are found to be enriched in non-exonic ultra-conserved elements, corresponding

to previously reported findings [14, 17, 84, 106]. Conserved exonic elements tend to be

involved in protein modification.

We scanned the human genome for repeated instances of these ultra-conserved

elements and found that 14 of the original 237 elements have at least one other instance

within the human genome. Generally, the repeats are not ultra-conserved except for some

of the seven repeats that are found both between IRX6 and IRX5 and between IRX5

and IRX3 on chromosome 16. These genes belong to a cluster of Iroquois homeobox

genes involved in embryonic pattern formation [75]. These repeated elements include two

32 bp sequences that are perfect reverse complements of each other and two (of lengths 23

bp and 28 bp) that are truncated reverse complements of each other. Overall, there are 5

distinct sequences within 226 bp regions on either side of IRX5 that are perfect reverse

complements of each other. The reverse complements are found in the same relative

order (Figure 5.6). Furthermore, exact copies of the two outermost sequences are found

both between IRX4 and IRX2 and between IRX2 and IRX1 on chromosome 5. Both

of these regions are exactly 226 bp long. The repetition of these short regions and the

conservation of their relative ordering and size suggests a highly specific coordinated

http://www.uniprot.org
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GO Annotation p-value

Exons (14)

protein serine/threonine kinase activity 4.545 · 10−3

transferase activity 1.494 · 10−2

neurogenesis 1.654 · 10−2

protein amino acid phosphorylation 2.210 · 10−2

Introns (10)

regulation of transcription, DNA-dependent 8.755 · 10−4

transcription factor activity 2.110 · 10−3

protein tyrosine kinase activity 4.785 · 10−3

protein amino acid phosphorylation 1.584 · 10−2

protein serine/threonine kinase activity 2.806 · 10−2

UTRs (3)

regulation of transcription, DNA-dependent 1.403 · 10−4

transcription factor activity 3.971 · 10−3

Flanking within 1.2 Mbp (4)

transcription factor activity 3.255 · 10−11

regulation of transcription, DNA-dependent 2.021 · 10−8

development 5.566 · 10−3

Table 5.5: GO annotations of genes associated with vertebrate ultra-conserved elements.
The number of GO annotations tested for each group are in parentheses. For each group,
only GO annotations associated with at least 3 genes in the group were considered.
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regulatory signal with respect to these Iroquois homeobox genes and strengthens similar

findings reported by [84].

54102348 TGTAATTACAATCTTACAGAAACCGGGCCGATCTGTATATAAATCTCACCATCCAATTAC
54102408 AAGATGTAATAATTTTGCACTCAAGCTGGTAATGAGGTCTAATACTCGTGCATGCGATAA
54102468 TCCCCTCTGGATGCTGGCTTGATCAGATGTTGGCTTTGTAATTAGACGGGCAGAAAATCA
54102528 TTATTTCATGTTCAAATAGAAAATGAGGTTGGTGGGAAGTTAATTT

55002049 AAATTAACTTCCCACCAACCTAATTTTTTCCTGAACATGAAATAATGATTTTCTGCCCGT
55002109 CTAATTACAAAGCCAACATCTGATCAAGCCAGCATCCAGAGGGGATTATCGCATGCACGA
55002169 GTATTAGACCTCATTACCAGCTTGAGTGCAAAATTATTACATCTTGTAATTGGATGGTGA
55002229 GATTTATATACAGATCGGCCCGGTTTCTGTAAGATTGTAATTACA

Figure 5.6: Sequences found on either side of IRX5. Positions underlined with a thick line
are ultra-conserved with respect to the nine-vertebrate alignment. Sequences underlined
with a thin line are not ultra-conserved but their reverse complement is. Indices are with
respect to human chromosome 16.

The longest ultra-conserved element that is repeated in the human genome is

of length 35 and is found 18 additional times. None of these 18 instances are ultra-

conserved, but this sequence is also found multiple times in other vertebrate genomes:

13 times in chimp, 10 times in mouse, 5 times in both rat and dog, 4 times in tetraodon,

3 times in zebra fish, and twice in both fugu and chicken. Of the 19 instances found

in the human genome, two are found in well-studied actin genes, ACTC and ACTG,

and the remainder are found in predicted retroposed pseudogenes with actin parent

genes. These predictions are based on the retroGene track of the UCSC genome browser.

Retroposed pseudogenes are the result of the reverse transcription and integration of the

mRNA of the original functional gene. Actins are known to be highly conserved proteins,

and β- and γ-actins have been shown to have a number of non-functional pseudogenes

[67, 76]. The precise conservation of this 35 bp sequence across a number of human actin

pseudogenes may suggest that these integration events may be relatively recent changes

in the human genome.

5.3.2 ENCODE alignment

Based on the annotations of known human genes provided by the UCSC Genome Browser,

69.2% of the bases of the ultra-conserved elements of length at least 20 in the ENCODE
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alignment overlap intragenic regions. Shorter sequences (less than 50 bp) have far more

overlap with exons and UTRs than longer sequences (at least 50 bp), as illustrated in

Figures 5.7(a) and 5.7(b). These longer sequences are heavily biased towards intronic

overlap, accounting for 67.7% of these sequences by base coverage.

Introns

Exons

UTRs

Unannotated

(a) 445 elements ≥ 20 and < 50 bp

Introns

Exons
UTRs

Unannotated

(b) 79 elements ≥ 50 bp

Figure 5.7: Functional base coverage of ultra-conserved elements found in ENCODE
regions based on annotations of known human genes.

Values for the gene density and non-exonic conservation level (human–mouse)

are available for the randomly selected ENCODE regions [26]. For these regions, the base

coverage by ultra-conserved elements is not correlated with gene density (Pearson corre-

lation = −0.0589) and is moderately correlated with non-exonic conservation (Pearson

correlation = 0.4350).

While we do not repeat the gene ontology analysis from the previous section,

we note that the regions with the greatest number of ultra-conserved elements by base

coverage are regions with well-known genes involved in DNA-dependent transcriptional

regulation (Table 5.6). The elements in these 5 regions account for 80.3% of the bases

of the ultra-conserved elements found in this dataset. The 35 longest ultra-conserved

elements, of length at least 69 bp, are also all found in these 5 regions.

5.3.3 Eight-Drosophila alignment

We analyzed the 255 ultra-conserved elements of length at least 75 bp using the Release

4.0 annotations of D. melanogaster. These elements overlap 95 unique genes. Although

the intragenic overlap for shorter elements (less than 100 bp) is only 42.9%, this propor-

tion increases to 68.2% for the elements that are at least 100 bp in length (Figures 5.8(a)
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Ultra Coverage (bp) Transcription Factor Genes # Aligned Species

ENm012 9,086 FOXP2 9
ENr322 2,072 BC11B 9
ENm010 1,895 HOXA1-7,9-11,13 ; EVX1 8
ENm005 718 GCFC ; SON 10
ENr334 549 FOXP4 ; TFEB 8

Table 5.6: ENCODE regions with the greatest number of ultra-conserved elements by
base coverage and their associated transcription factor genes.

and 5.8(b)). Unlike the vertebrate dataset, longer regions are associated with exons,

while shorter regions tend to correspond to unannotated elements.

IntronsExons

UTRs

Unannotated

(a) 196 elements ≥ 75 and < 100 bp

Introns

Exons

UTRs
Unannotated

(b) 59 elements ≥ 100 bp

Figure 5.8: Functional base coverage of ultra-conserved elements found in the Drosophila
alignment based on annotations of known D. melanogaster genes.

The three genes with the greatest amount of overlap with ultra-conserved el-

ements are para (765 bp), nAcRα-34E (426 bp) and nAcRα-30D (409 bp). All three

of these genes are involved in cation channel activity, and the ultra-conserved elements

correspond mostly with their exons. As with the nine-vertebrate dataset, the full set of

95 D. melanogaster genes is assessed for GO annotation enrichment, using all Release

4.0 D. melanogaster genes as the background set (Table 5.7). GO annotations exist

for 78 of these 95 genes, which we did not differentiate further according to where in

the gene overlap with an ultra-conserved element occurred. Genes involved in synaptic

transmission are strongly over-represented in genes that have an ultra-conserved element

overlap with their exons, introns and UTRs. These genes include those involved with

ion channel activity, signal transduction and receptor activity, playing roles in intracel-
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lular signaling cascades, muscle contraction, development, and behavior. RNA binding

proteins are also found to be over-represented. Another group of over-represented genes

are those involved in RNA polymerase II transcription factor activity. These genes are

strongly associated with development and morphogenesis.

The 130 ultra-conserved elements found in unannotated regions are grouped

together into 109 regions by common flanking genes. These regions are flanked by 208

unique genes, 134 of which have available GO annotations. The distance from these

ultra-conserved elements to their respective nearest gene ranges from 0.2–104 kb and

is 16 kb on average. A number of transcription factors involved with development

and morphogenesis are found within this set of genes. Five of the 10 flanking genes

with ultra-conserved sequences both upstream and downstream are transcription factors

(SoxN, salr, toe, H15, sob). In total, 44 unique transcription factors are found across the

intragenic and flanking gene hits.

Ten of the original 255 ultra-conserved elements are repeated elsewhere in the

D. melanogaster genome. However, all of these repeats correspond to annotated tRNA or

snRNA, but not to homologous exons or regulatory regions. There are 10 ultra-conserved

elements that overlap with tRNA (757 bp in sum), two that overlap with snRNA (191

bp in sum), and one that overlaps with ncRNA (81 bp). None of the ultra-conserved

elements correspond to annotated rRNA, regulatory regions, transposable elements, or

pseudogenes.

5.3.4 Discussion

We studied ultra-conserved elements in three very different datasets: an alignment of

nine distant vertebrates, an alignment of the ENCODE regions in mammals, and an

alignment of eight fruit flies. As Figures 5.5, 5.7, and 5.8 show, ultra-conserved elements

overlap with genes very differently in the three datasets. In particular, in the Drosophila

dataset, exonic conservation is much more substantial. This conservation at the DNA

level is very surprising, as the functional constraint on coding regions is expected to

be at the amino acid level. Therefore, the degeneracy of the genetic code should allow

synonymous mutations to occur without any selective constraint.

The GO analysis showed that non-coding regions near or in genes associated
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GO Annotation p-value

Exons, Introns, and UTRs (41)

synaptic transmission 3.290 · 10−9

specification of organ identity 1.044 · 10−6

ventral cord development 3.674 · 10−6

RNA polymerase II transcription factor activity 4.720 · 10−6

muscle contraction 8.714 · 10−6

voltage-gated calcium channel activity 3.548 · 10−5

RNA binding 7.650 · 10−5

synaptic vesicle exocytosis 3.503 · 10−4

leg morphogenesis 3.503 · 10−4

calcium ion transport 6.401 · 10−4

Flanking within 104 kb (58)

regulation of transcription 8.844 · 10−7

neurogenesis 5.339 · 10−6

ectoderm formation 8.285 · 10−6

endoderm formation 2.125 · 10−5

salivary gland morphogenesis 5.870 · 10−5

Notch signaling pathway 1.591 · 10−4

leg joint morphogenesis 1.788 · 10−4

RNA polymerase II transcription factor activity 2.381 · 10−4

salivary gland development 4.403 · 10−4

signal transducer activity 5.308 · 10−4

foregut morphogenesis 8.004 · 10−4

Table 5.7: GO annotations of genes associated with Drosophila ultra-conserved elements.
The number of GO annotations tested for each group are in parentheses. For each group,
each tested GO annotation is associated with at least 3 genes in the group.
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with transcriptional regulation tended to contain ultra-conserved elements in all datasets.

In Drosophila, ultra-conserved elements overlapped primarily with genes associated with

synaptic transmission. While the exonic conservation in Drosophila is due in part to a

much shorter period of evolution, the exact conservation of exons whose gene products

are involved in synaptic transmission may be fly-specific.

Non-coding regions that are perfectly conserved across all 9 species may be

precise regulatory signals for highly specific DNA-binding proteins. In particular, re-

peated ultra-conserved elements such as those found near the Iroquois homeobox genes

on chromosome 16 are excellent candidates for such regulatory elements. Of course, it

is interesting to note that the degree of conservation in our ultra-conserved elements

exceeds what is observed for other known functional elements, such as splice sites. We

discuss the statistical significance of ultra-conservation in Section 5.4.

5.4 Statistical significance of ultra-conservation

Which ultra-conserved elements are of a length that is statistically significant? In order

to address this question, we choose a model and compute the probability of observing

an ultra-conserved element of a given length for the nine-vertebrate and Drosophila-

alignments. First we consider phylogenetic tree models. These models allow for depen-

dence of the occurrence of nucleotides in the genomes of different species at any given

position in the aligned genomes, but make the assumption that evolutionary changes to

DNA at one position in the alignment occur independently from changes at all other,

and in particular, neighboring positions. Later we also consider a Markov chain, which

does not model evolutionary changes explicitly but incorporates a simple pattern of

dependence among different genome positions.

Before being able to compute a probability in a phylogenetic tree model, we

must build a tree and estimate the parameters of the associated model. The tree for

the nine-vertebrate alignment is shown in Figure 5.1. The topology of this tree is well-

known, so we assume it fixed and use PAML [107] to estimate model parameters by

maximum likelihood. As input to PAML, we choose the entire alignments with all columns

containing a gap removed. The resulting alignment was 6,300,344 positions long for the
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vertebrates and 26,216,615 positions long for the Drosophila. Other authors (e.g., [74])

have chosen to focus only on synonymous substitutions in coding regions, since they are

likely not selected for or against and thus give good estimates for neutral substitution

rates. However, our independence model does not depend on the functional structure

of the genome; that is, it sees the columns as i.i.d. samples. Thus, we believe that it is

more appropriate to use all the data available to estimate parameters.

There are many phylogenetic tree models (cf. Section 1.4) and we concentrate

here on the Jukes–Cantor and HKY85 models. With the parameter estimates from PAML,

we can compute the probability pcons of observing an ultra-conserved position in the

alignment. Recall that the probability pi1...is of seeing the nucleotide vector (i1, . . . , is) ∈

{A, C, G, T}s in a column of the alignment of s species is given by a polynomial in the

entries of the transition matrices Pe(t), which are obtained as Pe(t) = exp(Qte) where te

is the length of the edge e in the phylogenetic tree and Q is a rate matrix that depends

on the model selected.

Under the Jukes–Cantor model for the nine-vertebrate alignment, the maximum

likelihood (ML) branch lengths are shown in Figure 5.1 and give the probabilities

pAAAAAAAAA = · · · = pTTTTTTTTT = 0.01139...

Thus, the probability of a conserved column under this model is pcons = 0.0456. If we

require that the nucleotides are identical not only across present-day species but also

across ancestors, then the probability drops slightly to 0.0434.

Under the HKY85 model for the nine-vertebrate alignment, the ML branch

lengths are very similar to those in Figure 5.1 and the additional parameter is esti-

mated as κ = 2.4066. The root distribution is estimated to be almost uniform. These

parameters give the probabilities

pAAAAAAAAA = · · · = pTTTTTTTTT = 0.00367,

which are much smaller than their counterpart in the Jukes–Cantor model. The HKY85

probability of a conserved column is pcons = 0.014706. If we assume that nucleotides

must also be identical in ancestors, this probability drops to 0.01234.

The binary indicators of ultra-conservation are independent and identically

distributed according to a Bernoulli distribution with success probability pcons. The
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probability of seeing an ultra-conserved element of length at least ℓ starting at a given

position in the alignment therefore equals pℓ
cons. Moreover, the probability of seeing an

ultra-conserved element of length at least ℓ anywhere in a genome of length N can be

bounded above by Npℓ
cons. Recall that the length of the human genome is roughly 2.8

Gbp and the length of D. melanogaster is approximately 120 Mbp. Table 5.8 contains

the evaluated probability bound for different values of ℓ.

Nine-vertebrate (human) Drosophila (D. melanogaster)

Jukes–Cantor HKY85 Jukes–Cantor HKY85

pcons 0.0456 0.0147 pcons 0.1071 0.05969

10 0.0001 1.3 · 10−9 15 7.8 · 10−6 1.2 · 10−9

20 4.1 · 10−18 6.2 · 10−28 75 4.6 · 10−64 4.3 · 10−83

125 6.0 · 10−159 2.4 · 10−220 209 4.3 · 10−194 4.1 · 10−247

Table 5.8: Probabilities of seeing ultra-conserved elements of certain lengths in an in-
dependence model with success probability pcons derived from two phylogenetic tree
models.

However, 46% of the ungapped columns in the nine-vertebrate alignment are

actually ultra-conserved. This fraction is far greater than the 5% we would expect with

the JC model and the 1% under the HKY85 model. This suggests that the model of

independent alignment positions is overly simplistic. If we collapse the alignment to

a sequence of binary indicators of ultra-conserved positions, then a very simple non-

independence model for this binary sequence is a Markov chain model.

In a Markov chain model, the length of ultra-conserved elements is geometrically

distributed. That is, the probability that an ultra-conserved element is of length ℓ equals

θℓ−1(1− θ), where θ is the probability of transitioning from one ultra-conserved position

to another. The expected value of the length of an ultra-conserved element is equal to

1/(1−θ). The probability that an ultra-conserved element is of length ℓ or longer equals

∞
∑

k=ℓ

θk−1(1 − θ) = θℓ−1.

Therefore, the probability that at least one of U ultra-conserved elements found in a

multiple alignment is of length at least ℓ is equal to

1 − (1 − θℓ−1)U ≈ U · θℓ−1 for large ℓ.
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Restricting ourselves to the nine-vertebrate alignment (computations for the

Drosophila alignment are qualitatively similar), we used the mean length of the ultra-

conserved elements described in Section 5.3.1 to estimate the transition probability θ to

0.4785. Then the probability that at least one of the 1,513,176 ultra-conserved elements

of the nine-vertebrate alignment is of length 25 or longer equals about 3%. The probabil-

ity of seeing one of the U ultra-conserved elements being 30 or more bp long is just below

1/1000. However, the dependence structure in a Markov chain model cannot explain the

longest ultra-conserved elements in the alignment. For example, the probability of one

of the U elements being 125 or more bp long is astronomically small (0.3× 10−33). This

suggests that the Markov chain model does not capture the dependence structure in the

binary sequence of ultra-conservation indicators. At a visual level, this is clear from

Figure 5.3. Were the Markov chain model true then, due to the resulting geometric dis-

tribution for the length of an ultra-conserved element, the log-scale frequencies should

fall on a straight line, which is not the case in Figure 5.3. Modeling the process of ultra-

conservation statistically requires more sophisticated models. The phylogenetic hidden

Markov models that appear in [64, 87] provide a point of departure.

Despite the shortcomings of the calculations, it is clear that it is highly unlikely

that the ultra-conserved elements studied in this chapter occur by chance. The degree

of conservation strongly suggests extreme natural selection in these regions.
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Chapter 6

Evolution on distributive lattices

In this chapter, we model the evolution of a population under strong selective

pressure using a probabilistic model on a distributive lattice. We describe how the

combinatorial structure of a distributive lattice arises naturally from both biology and

algebraic statistics. The probability that the population develops an escape mutant

before extinction is encoded in the algebraic combinatorics of the lattice.

Using methods from combinatorics and algebra, we analyze the problem of drug

resistance in HIV under treatment with the protease inhibitors ritonavir and indinavir.

We begin by explaining the problem of drug resistance in HIV in Section 6.1 and our

mathematical formulation is Section 6.2. The material in this chapter comes from the

paper [10] with Niko Beerenwinkel and Bernd Sturmfels.

The evolutionary fate of a population is determined by the replication dynamics

of the ensemble and by the reproductive success of its individuals. We are interested

in scenarios where most individuals have a low fitness, eventually leading to extinction,

and only a few types of individuals (“escape mutants”) can survive permanently. These

situations often arise due to a significant change of the underlying fitness landscape.

For example, a virus that has been transmitted to a new host is confronted with a new

immune response. Likewise, medical interventions such as radiation therapy, vaccination,

or chemotherapy result in altered fitness landscapes for the targeted agents, which may

be bacteria, viruses, or cancer cells.

Given a population and such a hostile fitness landscape, the central question is



87

whether the population will survive. In the case of medical interventions we wish to know

the probability of successful treatment. Answering this question involves computing the

risk of evolutionary escape, i.e., the probability that the population develops an escape

mutant before extinction. In this chapter, we present a mathematical framework for

computing such probabilities.

6.1 Drug resistance in HIV

Our primary application is the evolution of drug resistance during treatment of HIV

infected patients [23]. Drug resistance is the consequence of mutations in the viral

proteins which are targeted by antiretroviral drugs.

HIV is a retrovirus, which means that it uses RNA instead of DNA as its

genetic material. Its genome is about 10000 nucleotides in length with nine open reading

frames. Three of the precursor proteins that are produced, however, are cleaved by the

viral protease enzyme, giving a total of 15 proteins which are produced by HIV.

The HIV virus binds to the CD4 receptor of a host cell with the aid of further

cellular coreceptors and enters the cell. It then releases its genetic material (which is

carried in the form of RNA). This RNA is transcribed into DNA using the HIV enzyme

reverse transcriptase and enters the nucleus. There it is transcribed into mRNA and

translated into proteins using the machinery of the host cell. This allows for many

copies of the virus to be made in the host cell. These proteins have to be processed by

the HIV protease enzyme into their functional form before the new copy of the virus

can infect other cells. Different classes of drugs have been designed to attack the virus

during every step of the above process with impressive success. There are currently 27

drugs approved by the FDA in four different classes. These drugs are typically taken in

combinations of two to four drugs simultaneously from two different classes.

However, the reverse transcription step is notoriously error prone, producing

on average one error in every replication of the genome. This high mutation rate can

lead to the development of drug resistance. As many as 50 percent of patients receiving

antiretroviral therapy are infected with viruses which are resistant to one of the available

drugs [23]. Given this, it is key for doctors to have methods of determining the best
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possible combination of drugs to prescribe given the patients level of resistance and

other factors.

In this chapter, we consider therapy with two different protease inhibitors (PIs).

These compounds interfere with HIV particle maturation by inhibiting the viral protease

enzyme. See Figure 6.1 for the structure of the protease enzyme and how the drugs bind

to and inhibit it. This picture was created using the program PyMOL [29] with data from

http://www.chem.ucsb.edu/∼molvisual/.

The effectiveness of PI therapy is limited by the development of drug resistance.

Rapid and highly error prone replication of a large virus population generates mutants

that resist the selective pressure of drug therapy. PI resistance is caused by mutations in

the protease gene that reduce the binding affinity of the drug to the enzyme. These mu-

tations have been shown to accumulate in a stepwise manner [15]. For most PIs, no single

mutation confers a significant level of resistance, but multiple mutations are required for

escape from drug pressure. Quantitative predictions of the probability of successful PI

treatment would help in finding effective antiretroviral combination therapies. Selecting

a drug combination amounts to controlling the viral fitness landscape.

6.2 The model of evolution

We regard the directed evolution of a population towards an escape state as a fluctuation

on a fitness landscape. The space of genotypes is modeled as follows. We start with

a finite partially ordered set (poset) E whose elements are called events. The events

are non-reversible mutations with some constraints on their order of occurrence. Such

constraints are primarily due to epistatic effects between different loci in a genome [81].

The event constraints define the poset structure: e1 < e2 in E means that event e1 must

occur before event e2 can occur. Each genotype g is represented by a subset of E , namely,

the set of all events that occurred to create g. Thus a genotype g is an order ideal in

the poset E . The space of genotypes G is the set of all order ideals in E , which is a

distributive lattice [90, Sec. 3.4]. The order relation on G is set inclusion and corresponds

to the accumulation of mutations. This mathematical formulation is reasonable in the

above situations, where a population is exposed to strong selective pressure.

http://www.chem.ucsb.edu/~molvisual/
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Figure 6.1: HIV protease enzyme with bound inhibitor.
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Figure 6.2: An event poset, its genotype lattice, and a fitness landscape.

The risk of escape is governed by the structure of G, the fitness function on

G, and the population dynamics (such as the mutation rates and population size). Our

focus is on the dependency of the risk of escape on the assigned fitness values for each

genotype g ∈ G. This leads us to the risk polynomial, which is shown to be equivalent

to a well-known object in algebraic combinatorics. Indeed, one of the objectives of this

work is to provide a bridge between algebraic combinatorics and evolutionary biology.

This chapter is organized as follows. In Section 6.3 we formalize our model of

a static fitness landscape on the genotype lattice G derived from an event poset E , and

we discuss evolution on the lattice G. In Section 6.4 we review the multistate branching

process studied by Iwasa, Michor and Nowak [54, 55].

In Section 6.5 we study the Bayesian networks which arise from identifying the

events in E with binary random variables. These statistical models can be used to infer

the genotype space from given data. For conjunctive Bayesian networks we recover the

distributive lattice of order ideals in E . Of particular interest is the case where E is

a directed forest: here the Bayesian network is a mutagenetic tree model [9, 12]. The

application of our methods to the development of PI resistance in HIV is presented in

Section 6.6.

Section 6.7 summarizes various representations of the risk polynomial in terms

of structures from algebraic combinatorics. Efficient methods for computing the risk

polynomial and their implementation are presented.
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6.3 Fitness landscapes on distributive lattices

A partially ordered set (or poset) is a set E together with a binary relation, denoted

“≤”, which is reflexive, antisymmetric, and transitive. Here we fix a finite poset E whose

elements are called events. If the number of events is n then we often identify the set

underlying E with the set [n] = {1, 2, . . . , n}. In this way, the subsets of E are encoded

by the 2n binary strings of length n. The empty subset of E is encoded by the all-zero

string 0̂ = 00 · · · 0 which represents the wild type, and the full set E is encoded by the

all-one string 1̂ = 11 · · · 1 which represents the escape state.

An order ideal g in a poset E is a subset of E that is closed downward; that is,

if e2 ∈ g and e1 ≤ e2, then e1 ∈ g. The set of all order ideals of E forms a distributive

lattice J(E) under inclusion. Birkhoff’s Representation Theorem [90, Thm. 3.4.1] states

that all distributive lattices have the form J(E) for a poset E . We write G = J(E), and

we call G the genotype lattice.

Example 6.1. Let E be the trivial poset, where no two events are comparable, with

|E| = n. Then G = J(E) is the Boolean lattice consisting of all subsets of E ordered by

inclusion. This means that all possible combinations of mutations are possible, and they

can occur in any order. Each of the 2n binary strings g ∈ {0, 1}n represents a mutational

pattern, or genotype.

In general, the event poset E does have non-trivial relations e1 < e2. The

relation e1 < e2 excludes all genotypes g with ge1 = 0 and ge2 = 1 from G. The remaining

genotypes g form a sublattice of the Boolean lattice {0, 1}n, and this is precisely our

distributive lattice G = J(E). Note that the lattice G is ranked, with the rank function

given by rank(g) = |g|.

Example 6.2. Consider a scenario with n = 4 mutation events, labeled E = {1, 2, 3, 4}.

Suppose that event 3 can only occur after events 1 and 2, and event 4 can only occur

after event 2. This allows for precisely eight genotypes

G =
{

0000, 1000, 0100, 1100, 0101, 1110, 1101, 1111
}

.

The event poset E and the genotype lattice G are shown in Figure 6.2.
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A fitness landscape associates to each possible genotype a number which quan-

tifies the reproductive capacity of an individual with that genotype [79]. We define a

fitness landscape on the distributive lattice G to be any function f : G → R. The value

f(g) at any g ∈ G is the fitness of the genotype g. Thus, the space of all fitness landscapes

is the finite-dimensional vector space R
G.

We shall consider certain special models of fitness landscapes, which are repre-

sented by linear subspaces of R
G . In the following definitions, a genotype g is regarded

as a subset of the event poset E , where |E| = n. A constant fitness landscape has the

form f(g) ≡ a for some constant a. Thus the constant landscapes form a line through

the origin in R
G . A graded fitness landscape is a landscape on G whose fitness values

depend only on the rank. Equivalently, we have f(g) = a|g| for constants a0, a1, . . . , an.

Thus, graded fitness landscapes form an (n + 1)-dimensional linear subspace of R
G.

Our biological application in Section 6.6 uses the graded fitness landscape

model, which means that the fitness of a virus type depends only on the number of

mutations it harbors. We shall model situations where a virus escapes from a wild type

0̂ to a drug-resistant type 1̂. In this case, we assume a graded fitness landscape that is

monotonically increasing with rank, i.e.,

a0 < a1 < a2 < · · · < an.

This implies that the fitness landscape f has a unique local (and global) maximum at

the drug resistant type 1̂, which is the top element in G.

We next introduce the mathematical framework for evolution on a fitness land-

scape. The general setup is as in the work of Reidys and Stadler [79], but this is adapted

here to our specific situation, where the genotypes form a distributive lattice G. The

order relation on G, which comes from inclusion of subsets of E , induces a neighborhood

structure on G where the neighbors of g ∈ G are the genotypes that strictly contain g,

N(g) :=
{

h ∈ G | g ⊂ h
}

. (6.1)

Unlike the typical situation considered in [79], this notion of neighborhood is not sym-

metric. To be precise, we have that h ∈ N(g) implies g 6∈ N(h).

This neighborhood structure implies that mutational changes are possible only

upward in the genotype lattice. This structure models a directed evolutionary process
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from the wild type 0̂ towards the escape state 1̂. Typically, our configuration space G is

a small subset of the Boolean lattice {0, 1}n of all binary strings. Indeed, in the course of

viral evolution, a population will visit only a small fraction of {0, 1}n, as most mutants

are not viable.

Suppose that the number of genotypes in G is m. We wish to define dynamics

between the states of G. To this end, we fix a linear extension of G, and we introduce

an m × m matrix of transition rates, written U = (ugh), whose rows and columns are

indexed by genotypes g, h ∈ G. Each entry ugh of the matrix U is a non-negative real

number which is zero unless h ∈ N(g). In the framework of algebraic combinatorics, it

is convenient to think of the matrix U as an element in the incidence algebra of G; see

[90, Sec. 3.6].

We further assume that the non-zero mutation rates ugh depend only on the

events in h\g. Equivalently, the rate at which a collection of mutation events occurs

is independent of which other mutations have already occurred. With this assumption,

there are only n free parameters µ1, . . . , µn in the matrix U, where µe is the mutation

rate of event e. Then

ugh =











∏

e∈h\g µe if g ⊂ h

0 otherwise.
(6.2)

In particular, if all rates are the same, say µ = µ1 = · · · = µn, then the entries of U are

ugh = µ|h\g| if g ⊂ h and ugh = 0 otherwise.

Example 6.3. For the genotype lattice G in Figure 6.2, the matrix U equals





































0000 1000 0100 1100 0101 1110 1101 1111

0000 0 µ1 µ2 µ1µ2 µ2µ4 µ1µ2µ3 µ1µ2µ4 µ1µ2µ3µ4

1000 0 0 0 µ2 0 µ2µ3 µ2µ4 µ2µ3µ4

0100 0 0 0 µ1 µ4 µ1µ3 µ1µ4 µ1µ3µ4

1100 0 0 0 0 0 µ3 µ4 µ3µ4

0101 0 0 0 0 0 0 µ1 µ1µ3

1110 0 0 0 0 0 0 0 µ4

1101 0 0 0 0 0 0 0 µ3

1111 0 0 0 0 0 0 0 0




































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Note that the entry in row g and column h of any power Uk equals ugh times the number

of paths of length k from g to h in G. In particular, U5 = 0.

Let f be a fitness landscape on G and F = diag
(

f(g) | g ∈ G
)

the m × m

diagonal matrix whose entries are the fitness values. The entry of the matrix product

UF in row g and column h represents the probability of genotype g transitioning into

genotype h in one step. A precise probabilistic derivation and interpretation will be

given in the next section.

We are interested in all mutational pathways that lead from the wild type 0̂

to the escape state 1̂. Towards this end, note that the entry (g, h) of the matrix (UF)k

represents the probability of genotype g evolving to genotype h along any mutational

pathway (chain) of length k in the genotype lattice G. The chains from 0̂ to 1̂ in G are

accounted for by the upper right hand entry of (UF)k. Note that the matrix (UF)k is

zero for k > n.

To account for chains of arbitrary length, we consider the matrix

(I − UF)−1 − I = UF + (UF)2 + (UF)3 + · · · + (UF)n, (6.3)

where I is the m × m identity matrix. We summarize our discussion in the following

proposition, which is proved by elementary matrix algebra.

Proposition 6.4. The entry of the matrix (6.3) in row g and column h is zero unless

g ⊂ h, in which case it is ugh · f(h) ·Pgh(f) where Pgh is a polynomial function of degree

|h\g| − 1 on the space of all fitness landscapes R
G.

The polynomial Pgh(f) is the generating function for all chains from g to h in

G. This will be made precise in the following corollary. We shall restrict ourselves to the

most important case when g = 0̂ is the wild type and h = 1̂ is the escape state. Studying

P0̂1̂(f) only is no loss of generality because any interval of a distributive lattice is again

a distributive lattice.

Proposition 6.4 tells us that P0̂1̂(f) is a polynomial of degree n − 1 in the

unknown fitness values f(g), which are also written as fg, where g ∈ G.
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Corollary 6.5. The polynomial P0̂1̂(f) in the upper-right entry of (6.3) equals

P0̂1̂(f) =
∑

0̂=g0⊂g1⊂···⊂gk=1̂

fg1fg2 · · · fgk−1
, (6.4)

where the sum runs over all chains from 0̂ to 1̂ in the genotype lattice G.

6.4 The risk of escape

For a poset of events E and the corresponding distributive lattice G = J(E), the risk

polynomial of G is defined as the polynomial (6.4), which we denote by R(G; f). The

risk polynomial was introduced in [54, 55]. In this section we review the evolutionary

dynamics model proposed in these papers, and we discuss the probabilistic meaning of

the risk polynomial.

Example 6.6. Let G be the genotype lattice in Figure 6.2. Then the risk polynomial

R(G; f) is the following polynomial of degree three in six unknowns:

1 + f1000 + f0100 + f1100 + f0101 + f1110 + f1101

+f1000f1100 + f0100f1100 + f0100f0101 + f1000f1110 + f0100f1110

+f1000f1101 + f0100f1101 + f1100f1110 + f1100f1101 + f0101f1101

+f1000f1100f1110 + f0100f1100f1110 + f1000f1100f1101

+f0100f1100f1101 + f0100f0101f1101.

If we restrict the fitness landscape f to lie in a linear subspace of R
G , then

R(G; f) specializes to a polynomial in fewer unknowns. For example, the risk polynomial

for graded fitness landscapes is obtained from the specialization f(g) = a|g|. That risk

polynomial has degree n−1 and is denoted by R(G; a1, . . . , an−1). For instance, R(G; f)

in Example 6.6 specializes to

R(G; a1, a2, a3) = 1 + 2a1 + 2a2 + 2a3 + 3a1a2 + 4a1a3 + 3a2a3 + 5a1a2a3.

For constant fitness landscapes f ≡ a , the risk polynomial is a polynomial in one un-

known a. It is denoted R(G; a). In our running example,

R(G; a) = 1 + 6a + 10a2 + 5a3.
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We now make precise the notion of risk of escape, which will justify our def-

inition of the risk polynomial. Our derivation is based on the model for the dynamics

of a replicating population on a fitness landscape studied by Iwasa, Michor and Nowak

[54, 55]. See also the work of Wilke [105] and the references given therein for approaches

to computing fixation probabilities.

A multistate branching process [6] consists of a set of genotypes along with a

fitness landscape and mutation rates between genotypes. We assume a discrete time

process, where in one generation an individual with genotype g has a random number of

offspring following a Poisson distribution with mean Rg. Some of these offspring may be

mutants according to the mutation rates ugh. The parameter Rg is the basic reproductive

ratio [69, Chap. 3].

We assume there is no interaction between individuals; each reproduces at a

rate independent of the distribution of the population. Let ρk
g,h be the probability that

one individual of genotype g has k children of type h. Then,

ρk
g,h =

(ughRg)
k · e−ughRg

k!
. (6.5)

The reproductive fitness fg is related to the reproductive ratio Rg by

fg =
Rg

1 − Rg
and Rg =

fg

1 + fg
. (6.6)

Let ξg be the probability of escape starting with one individual of genotype g,

so 1 − ξg is the probability of extinction. In particular, ξ1̂ is the probability that one

resistant virus will not become extinct. Each of these probabilities is a function of the

mutation rates ugh and the reproductive ratios Rg. We assume that the ugh are as in

(6.2), but with ugg = 1. Thus, each escape probability ξg can be expressed as a function

of the µe for e ∈ E and (using the relation (6.6)) the fitness values fg for g ∈ G.

Theorem 6.7. If ξg ≪ 1 for g 6= 1̂, then the probability of escape on the fitness landscape

f ∈ R
G starting with one individual of wild type 0̂, satisfies

ξ0̂ ≈ ξ1̂ · f0̂ ·
∏

e∈E

µe · R(G; f). (6.7)
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Proof. The probability of extinction satisfies the recursive formula

1 − ξg =
∏

h⊇g

∞
∑

k=0

(1 − ξh)k · ρk
g,h. (6.8)

Using (6.5), the right hand side of (6.8) can be rewritten as follows:

∏

h⊇g

exp((1 − ξh)ughRg) · exp(−ughRg) = exp





∑

h⊇g

−ξhughRg



 .

We conclude that

log(1 − ξg) = −
∑

h⊇g

ξhughRg for all g ∈ G.

Under the assumption that ξg ≪ 1 for g 6= 1̂, we can linearize the logarithms using the

relation log(1 − ξg) ≈ −ξg. This implies, for g ∈ G\{1̂},

ξg ≈ Rg ·
∑

h⊇g ξhugh

=
Rg

1−Rgugg
·
∑

h⊃g ξhugh

= fg ·
∑

h⊃g ξhugh.

The theorem now follows by setting g = 0̂ and expanding the last equation

recursively. Here we are using the fact from (6.2) that the product of the ugh over any

chain from 0̂ to 1̂ in G equals
∏

e∈E µe.

The typical situation of interest is a fitness landscape for which only the escape

state has a basic reproductive ratio greater than one, i.e.,

R1̂ > 1 and Rg < 1 for all g 6= 1̂.

When the positive numbers Rg are very small for g ∈ G\{1̂} then the approximation

(6.7) is valid, and it shows the crucial role that the risk polynomial R(G; f) plays in

assessing the risk of escape from the wild type 0̂ to the escape state 1̂. The theorem

implies that the risk of escape of a population of N wild type viruses is (1 − ξ0̂)
N . In

Section 6.8 we discuss the situation in which the population is not homogeneous at the

time of intervention.
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Figure 6.3: An event poset whose general risk polynomial is of degree 11 in 375 unknowns.

The risk of escape is an important quantity in analyzing the invasiveness of

pathogens and in assessing the success probability of medical interventions such as

chemotherapy. However, putting this concept into practice depends on our ability to

actually compute the risk polynomial. It turns out that methods from algebraic combi-

natorics lead to efficient algorithms for this task. We present several methods in detail

in Section 6.7.

Our method of choice from a practical perspective relies on computing linear

extensions of the event poset E (Theorem 6.15). Our software implementation is available

at http://bio.math.berkeley.edu/riskpoly/. For an example of the efficiency of the

software, let E be the poset in Figure 6.3 on n = 12 events with cover relations i < 6 + i

for 1 ≤ i ≤ 6 and i < 7 + i for 1 ≤ i ≤ 5. Here the genotype lattice G consists of 375

genotypes. The risk polynomial R(G; f) is a polynomial of degree 11 in 375 unknowns

fg. This polynomial has 224,750,298 monomials in the 375 unknowns, but we represent

it as a sum of 2,702,765 products, one for each linear extension of the event poset E . Our

software takes about ten seconds to compute this representation of R(G; f). The result

takes up 200MB of disk space.

The univariate risk polynomial for this example is

1 + 375a + 19088a2 + 324498a3 + 2610169a4 + 11729394a5 + 32080336a6+

55597909a7 + 61448965a8 + 42020208a9 + 16216590a10 + 2702765a11 .

Thus, exact symbolic computations, as opposed to numerical approximations, may be

necessary and feasible when one is interested in assessing the risk of escape in applications

like the one described in Section 6.6 below.

http://bio.math.berkeley.edu/riskpoly/
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6.5 Distributive lattices from Bayesian networks

In this section, we present a family of statistical models that naturally gives rise to

distributive lattices. This statistical interpretation provides a method for deriving the

genotype lattice G directly from data. The basic idea is to estimate the poset structure

on E from observed genotypes, by applying model selection techniques to a range of

Bayesian networks, and to define G as the set of all genotypes with non-zero probability

in the model.

We first make precise the derivation of a genotype space from a statistical

model. Let E be an unordered set of n genetic events. The events are labeled by

1, 2, . . . , n. Subsets of E are identified with binary strings g ∈ {0, 1}n. They are the

possible genotypes. We consider binary random variables XE = (X1, . . . ,Xn), where

Xe = 1 indicates the occurrence of event e. Let ∆ denote the (2n − 1)-dimensional

simplex of probability distributions on {0, 1}n. A statistical model for XE is a map

p : Θ → ∆, where Θ is some parameter space. The g-th coordinate of p, denoted pg, is

the probability of genotype g ∈ {0, 1}n under the model p. The induced genotype space

of the model p : Θ → ∆ is the set Gp of all strings g ∈ {0, 1}n such that pg is not the

zero function on Θ. We regard Gp as a poset ordered by inclusion.

Now consider a directed acyclic graph on the set of events E . We will also call

this graph E . The Bayesian network model, or directed acyclic graphical model, defined

by E is the family of joint distributions that factor as

Pr(X1, . . . ,Xn) =
∏

e∈E

Pr(Xe | Xpa(e)),

where pa(e) denotes the set of parents of e in E . Equivalently, a Bayesian network is

specified by a set of conditional independence statements. Each node is independent of

its ancestors given its parents. See [61] for an introduction to the relevant statistical

theory and [51] for an algebraic perspective.

The parameters for a Bayesian network are specified by providing, for each

event e ∈ E , a 2|pa(e)| × 2 matrix θe. The matrix entries are

θe
gpa(e),ge

= Pr
(

Xe = ge | Xpa(e) = gpa(e)

)

,
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for gpa(e) ∈ {0, 1}pa(e), ge ∈ {0, 1}. These conditional probabilities satisfy

θe
gpa(e),0

≥ 0 , θe
gpa(e),1

≥ 0 and θe
gpa(e),0

+ θe
gpa(e),1

= 1. (6.9)

Set d =
∑

e∈E 2|pa(e)| and Θ = [0, 1]d. The points in the cube Θ are identified

with n-tuples of matrices θ = (θe | e ∈ E) as above. The general Bayesian network is

the polynomial map p : Θ → ∆ whose coordinates are

pg(θ) =
∏

e∈E

θe
gpa(e),ge

. (6.10)

The general Bayesian network on E induces the genotype space Gp = {0, 1}n, the Boolean

lattice on E . Indeed, the factorization (6.10) implies that no genotype g ∈ {0, 1}n has

probability zero for all parameter values.

To obtain other genotype spaces, we replace the cube Θ = [0, 1]d by one of its

faces, as follows. For each event e ∈ E consider a Boolean function βe : {0, 1}pa(e) →

{0, 1}. If βe(ge) = 0 then the row of the 2|pa(e)| × 2-matrix θe indexed by the genotype g

is fixed to be the vector (1, 0); otherwise that row remains indeterminate subject to the

constraints (6.9). Let Θβ denote the face of Θ determined by these requirements and

pβ : Θβ → ∆ the restriction of the polynomial map p to Θβ. The resulting model is the

Bayesian network on E constrained by the Boolean functions βe.

If all Boolean functions βe are disjunctions then we get the disjunctive Bayesian

network on E . In this model, an event e can only occur if at least one of its parent events

has already occurred. If all Boolean functions βe are conjunctions then we get the

conjunctive Bayesian network on E . In this model, an event e can only occur if all of its

parent events have already occurred. These restricted Bayesian network models induce

interesting genotype spaces. Our main result in this section concerns the conjunctive

case.

We regard the given directed acyclic graph E as a poset by setting e1 ≤ e2

if there exists a path from e1 to e2. We write pconj : [0, 1]n → ∆ for the conjunctive

Bayesian network on E , since it has precisely n free parameters.

Theorem 6.8. The genotype space induced by the conjunctive Bayesian network on E

is the distributive lattice of order ideals in E, i.e., Gpconj = J(E).
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Proof. The possible genotypes g are binary strings whose coordinates ge indicate whether

or not the event e has occurred. If p is any of the Bayesian network models discussed

above, then (6.10) implies that g ∈ Gp if and only if each θe
gpa(e),ge

is non-zero. Consider

now the conjunctive model p = pconj. Here, the conditional probability θe
gpa(e),ge

is non-

zero if and only if ge = 1 implies gpa(e) = (1, . . . , 1). This is precisely the condition for g

to be an order ideal in E . Thus Gp is the distributive lattice of order ideals of E .

The following example illustrates Theorem 6.8, and it compares the genotype

spaces induced by the disjunctive and the conjunctive Bayesian network. The former is

not a distributive lattice, but the latter always is.

Example 6.9. Let E be the event poset in Figure 6.2. The general Bayesian network

model defined by E is parametrized by the following four matrices:

θ1 =
(

a 1 − a
)

,

θ2 =
(

b 1 − b
)

,

θ3 =















c00 1 − c00

c01 1 − c01

c10 1 − c10

c11 1 − c11















, θ4 =





d0 1 − d0

d1 1 − d1



 .

The map p : [0, 1]8 → ∆ has coordinates

p0000 = abc00d0, p0001 = abc00(1 − d0),

p0010 = ab(1 − c00)d0, p0011 = ab(1 − c00)(1 − d0),

p0100 = a(1 − b)c01d1, p0101 = a(1 − b)c01(1 − d1),

p0110 = a(1 − b)(1 − c01)d1, p0111 = a(1 − b)(1 − c01)(1 − d1),

p1000 = (1 − a)bc10d0, p1001 = (1 − a)bc10(1 − d0),

p1010 = (1 − a)b(1 − c10)d0, p1011 = (1 − a)b(1 − c10)(1 − d0),

p1100 = (1 − a)(1 − b)c11d1, p1101 = (1 − a)(1 − b)c11(1 − d1),

p1110 = (1 − a)(1 − b)(1 − c11)d1, p1111 = (1−a)(1−b)(1−c11)(1−d1).

This model induces the Boolean lattice {0, 1}4 as the genotype space.

The disjunctive Bayesian network is the six-dimensional submodel obtained by

setting c00 = 1 and d0 = 1. This substitution implies

p0001 = p0010 = p0011 = p1001 = p1011 = 0.
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The genotype space Gpdisj consists of the remaining eleven strings in {0, 1}4. Note that

Gpdisj is not a lattice because it is not closed under intersections. For instance, 1010 and

0110 are in Gpdisj but 0010 = 1010 ∩ 0110 6∈ Gpdisj.

The conjunctive Bayesian network is the four-dimensional submodel obtained

by setting c00 = c01 = c10 = d0 = 1. The remaining eight non-zero probabilities are

indexed by the eight genotypes in Figure 6.2:

p0000 = ab , p0100 = a(1 − b)d1 ,

p0101 = a(1 − b)(1 − d1) , p1000 = (1 − a)b ,

p1100 = (1 − a)(1 − b)c11d1 , p1101 = (1 − a)(1 − b)c11(1 − d1) ,

p1110 = (1 − a)(1 − b)(1 − c11)d1 , p1111 = (1−a)(1−b)(1−c11)(1−d1).

If E is a directed forest, i.e., if every e ∈ E has at most one parent, then we

can augment E to a tree ET by adding an auxiliary root node 0 which points to the

roots (edges with no parents) of the forest. On the resulting tree ET we consider the

mutagenetic tree model of [12, 31].

Proposition 6.10. If E is a directed forest then the following three statistical models

coincide: the disjunctive Bayesian network on E, the conjunctive Bayesian network on

E, and the mutagenetic tree model on ET .

Proof. The disjunctive and the conjunctive networks coincide because they are defined by

the same specializations of the parameters θe. The identification with the mutagenetic

tree model follows from [9, Thm. 14.6].

Mutagenetic tree models can be learned from observed data by an efficient

combinatorial algorithm. With appropriate edge weights that depend on the pairwise

probabilities of events, a mutagenetic tree can be obtained as the maximum weight

branching rooted at 0 in the complete graph on {0, . . . , n}; see [31]. This gives an

efficient method for learning the poset E , and hence the genotype lattice G = J(E),

from data. It would be interesting to extend this model selection technique to arbitrary

conjunctive Bayesian networks.
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6.6 Applications to HIV drug resistance

We investigate the development of resistance during treatment of HIV infected patients

with two different PIs. Consider the seven genetic events

E = {K20R, M36I, M46I, I54V, A71V, V82A, I84V} ,

where K20R stands for the amino acid change from lysine (K) to arginine (R) at position

20 of the protease chain, etc. The occurrence of these mutations confers broad cross-

resistance to the entire class of PIs. Appearance of the virus with all 7 mutations renders

most of the PIs ineffective for subsequent treatment. We analyze the risk of reaching this

escape state under therapy with the PIs ritonavir (RTV) and indinavir (IDV) [25, 66].

We use mutagenetic trees for estimating preferred mutational pathways and for

defining genotype lattices. For both drugs, a tree ET is learned from genotypes derived

from patients under the respective therapy. We used 112 and 691 samples from the

Stanford HIV Drug Resistance Database [80] for ritonavir and indinavir, respectively.

Figure 6.4 shows the inferred mutagenetic trees. The models indicate that the evolution

of ritonavir resistance is partly a linear process, whereas indinavir resistance develops in

a less ordered fashion. This is consistent with previous studies [25, 66]. The genotype

lattices G have size 16 for ritonavir and 45 for indinavir. We study the risk polynomials

on these lattices under different fitness landscape models.

For the constant fitness landscape on G\{0̂, 1̂}, we obtain

RRTV(a) = 15a6 + 70a5 + 131a4 + 124a3 + 61a2 + 14a + 1,

RIDV(a) = 420a6 + 1470a5 + 1970a4 + 1250a3 + 372a2 + 43a + 1.

Thus, the risk of developing all seven PI resistance mutations is higher under indinavir

therapy than under ritonavir: RIDV(a) > RRTV(a) for a > 0. Intuitively, the risk under

ritonavir is lower because the mutations must occur in a certain order. Likewise, the

high risk under indinavir results from many mutations occurring independently, which

gives rise to a large genotype lattice and to many mutational pathways from the wild

type to the escape state.

More realistic fitness landscapes may be derived by modeling viral fitness as a

function of drug concentration. We follow the approach pursued in [94] and use a simple
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Figure 6.4: Mutagenetic trees ET for the development of resistance to (a) ritonavir and
(b) indinavir in the HIV-1 protease. The event poset E is obtained by removing the root
node “0”.

saturation function for this dependency. Specifically, we assume viral fitness to be the

following function of drug concentration D,

fg(D) =
φg

1 + D/rg
, (6.11)

where φg denotes the fitness of genotype g in the absence of drug and rg the IC50

value of g, i.e., the drug concentration necessary to inhibit viral replication in vitro by

50%. The IC50 value is a measure of resistance. We will assume throughout that all

φg ≡ φ are equal. If we assume, in addition, that the resistance landscape is constant

on G\{0̂, 1̂}, with rg ≡ r, then the substitution (6.11) turns the risk polynomial into a

rational function in φ, D, and r. For example, for ritonavir, this rational function is

(15φ2r2 + 10φDr + 10φr2 + D2 + 2Dr + r2)(φr + D + r)4

(D + r)6
.

In general, the IC50 values rg are distinct and can be determined experimentally

for some genotypes by phenotypic resistance testing [103], and may be predicted for all

genotypes using regression techniques [8]. PI phenotypic resistance data suggests a

graded resistance landscape; see [15] and [25, Tab. 3]. Hence, we estimate the resistance

r ∈ R
8 for ritonavir and indinavir by defining rk as the mean predicted IC50 of all

genotypes of rank k. The resulting resistance landscapes are shown in Figure 6.5.
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Figure 6.5: Graded resistance landscapes for ritonavir (RTV, bullets) and indinavir (IDV,
squares). Resistance is quantified as the drug concentration necessary to inhibit viral
replication in vitro by 50% (IC50).
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Figure 6.6: Drug dependent risk. The log of the risk polynomial for ritonavir (a) and
indinavir (b) is displayed as a function of plasma drug concentration D. Marked values
denote mean trough (Cmin) and peak (Cmax) levels observed in clinical studies. The
parameter φ is the relative fitness of mutants as compared to the wild type in the
absence of drug.

The graded risk polynomials R(a1, a2, a3, a4, a5, a6) have 64 terms. After sub-

stituting ak = φ/(1 + D/rk), we obtain rational risk functions in D with parameter φ.

Figure 6.6 illustrates the dependency of the risk on drug concentration for three different

values of φ. For both drugs we indicate published mean plasma trough (Cmin) and peak

(Cmax) levels observed in clinical settings.

This example illustrates how the risk polynomial can be used to study viral

escape as a function of different parameters. For instance, given a pharmacokinetics

model of antiretroviral drug therapy, we can compute the risk of developing resistance

after a patient has missed a dose. Thus, our mathematical framework may help in

designing robust drug combinations.

6.7 Mathematics and computation of the risk polynomial

Here we discuss in more detail mathematical properties of the risk polynomial and we

present several methods for computing it. The given data consists of an n element poset
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E and its induced genotype lattice G, which is the distributive lattice of order ideals

in E . We assume that G has m elements, which are encoded either as subsets of E or

as binary strings in {0, 1}n. The risk polynomial is the polynomial R(G; f) in the m

unknowns fg = f(g), one for each genotype g. We are also interested in specializations

of R(G; f) obtained by setting some (or all) of the unknowns equal to each other, such

as the graded risk polynomial and the univariate risk polynomial.

Stanley’s linear algebra method

A direct method for computing the risk polynomial is given in Section 6.4. Namely, we

can set all µe equal to one in the matrix U and then compute the upper right entry

of the matrix (I − UF)−1 − I of equation (6.3). In practice, one would compute this

entry by a dynamic program which runs in time O(m2). That dynamic program is easily

derived by resolving the recursion in the last equation of the proof of Theorem 6.7.

The following alternative linear algebra technique for computing polynomials

similar to our risk polynomials was given by Stanley in [89]. Let G′ = G\{0̂, 1̂} denote

the genotype lattice with the top element 1̂ and the bottom element 0̂ removed. We

define A to be the anti-adjacency matrix of the truncated genotype lattice G′. Thus A is

the (m− 2)× (m− 2)-matrix with rows and columns indexed by G′, and whose entry in

row g and column h is 0 if g ⊂ h and is 1 otherwise. We write I for the (m−2)× (m−2)

identity matrix and F′ = diag
(

f(g) | g ∈ G′
)

for the (m − 2) × (m − 2)-diagonal matrix

whose entries are the fitness values. Stanley’s result reads as follows.

Theorem 6.11 (Stanley [89]). The risk polynomial R(G; f) equals the determinant of

the (m − 2) × (m − 2)-matrix I + F′ · A.

Example 6.12. Let G be the genotype lattice in Figure 6.2. Then m = 8 and I + F′ ·A
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is the 6 × 6-matrix



























1000 0100 1100 0101 1110 1101

1000 1 + f1000 f1000 0 f1000 0 0

0100 f0100 1 + f0100 0 0 0 0

1100 f1100 f1100 1 + f1100 f1100 0 0

0101 f0101 f0101 f0101 1 + f0101 f0101 0

1110 f1110 f1110 f1110 f1110 1 + f1110 f1110

1101 f1101 f1101 f1101 f1101 f1101 1 + f1101



























.

The determinant of this matrix is the risk polynomial of Example 6.6.

The Hilbert series method

A more conceptual way of thinking about the risk polynomial is based on the following

algebraic construction. The Stanley-Reisner ideal IG′ of G′ is the ideal generated by all

quadratic monomials fg · fh where g and h are genotypes that are incomparable, i.e.,

neither g ⊆ h nor h ⊆ g holds. The ambient polynomial ring S = R[f ] is generated

by the unknowns fg where g ∈ G′. The Hilbert series of IG′ is the formal sum over all

monomials fu =
∏

g∈G′ f
ug
g which are not in the ideal IG′ . This is a formal generating

function which can be written as a rational function of the following form

H(S/IG′ ; f) =
KG(f)

∏

g∈G′(1 − fg)
.

Here KG(f) is a polynomial in the unknowns fg with integer coefficients. The polynomial

KG(f) is known as the K-polynomial of the ideal IG′ . We refer to [65] for an introduction

to Stanley-Reisner ideals and their K-polynomials.

If E is a directed forest (and we identify fg = pg) then Proposition 6.10 and

[9, Thm. 14.11] imply that the ideal IG′ is an initial monomial ideal of the conjunctive

Bayesian network on E . In a forthcoming paper we shall prove that this initial ideal

property holds for all event posets (not just trees).

Example 6.13. Let G be the genotype lattice in Figure 6.2. Then

IG′ = 〈 f0101f1110, f1101f1110, f0101f1100, f0101f1000, f0100f1000〉
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is indeed the initial monomial ideal of the conjunctive Bayesian network in Example 6.9.

The K-polynomial KG(f) equals

1 − f0101f1110 − f1101f1110 − f0101f1100 − f0101f1000 − f0100f1000

+f0100f1000f0101 + f1000f0101f1100 + f1000f0101f1110 + f0101f1100f1110

+f0101f1110f1101 + f0100f1000f1110f1101

−f1000f0101f1100f1110 − f0100f1000f0101f1110f1101.

Again using Proposition 6.10 and Theorem 14.11 in [9] we see that the risk

polynomial R(G; f) is the sum of all squarefree monomials in the expansion of the

Hilbert series H(S/IG′ ; f). Equivalently, R(G; f) is the reduction of H(S/IG′ ; f) modulo

the ideal generated by the squares f2
g of the unknowns. Since 1/(1− fg) equals 1 + fg

modulo 〈 f2
g 〉, we have the following result.

Proposition 6.14. The risk polynomial R(G; f) of the genotype lattice G is the sum of

all squarefree terms in the expansion of

KG(f) ·
∏

g∈G′

(1 + fg),

where KG(f) is the K-polynomial of the Stanley-Reisner ideal IG′.

The univariate risk polynomial R(G; a) is derived from R(G; f) by replacing

each fg by the scalar unknown a. We have

R(G; a) = c0 + c1a + c2a
2 + · · · + cn−1a

n−1,

where ci is the number of chains of length i in G′. Thus, (c0, . . . , cn−1) is the f -vector of

the simplicial complex of chains in G′. Likewise, we get the graded risk polynomial from

R(G; f) by replacing each fg by a|g|. We note that the graded risk polynomial is related

to Ehrenborg’s quasi-symmetric function encoding [42] of the flag f -vector of the chain

complex of G′.

The linear extensions method

One advantage of both Theorem 6.11 and Proposition 6.14 is that these formulas do not

actually depend on the fact that G is a distributive lattice. They also apply if the set G
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of genotypes is an arbitrary poset. This is relevant for our discussion of the statistical

models in Section 6.5, where we introduced a more general class of posets Gp ⊆ {0, 1}n.

This advantage is also a disadvantage: Theorem 6.11 and Proposition 6.14 do

not give the most efficient methods for computing R(G; f) when G is the distributive

lattice induced by an event poset E . In what follows we present a specialized and more

efficient algorithm for the risk polynomial. The input to this algorithm consists of the

event poset E . It is not necessary to compute the genotype lattice G as this will be done

as a byproduct of our approach, which is to compute the risk polynomial R(G; f) directly

from E .

As before, we assume that E has n elements, and we write [n] for the linearly

ordered set {1, 2, . . . , n}. A linear extension of E is an order-preserving bijection π : E →

[n]. This means that e < e′ in E implies π(e) < π(e′). Every linear extension π : E → [n]

gives rise to an ordered list of n − 1 genotypes g(1), g(2), . . . , g(n−1) in G′ = G\{0̂, 1̂}

as follows. The genotype g(i) is the subset of E consisting of all events whose image

under π is among the first i positive integers. In symbols, g(i) = π−1({1, 2, . . . , i}). The

sequence g(1), g(2), . . . , g(n−1), derived from π, represents a mutational pathway in G.

We now fix one distinguished linear extension of E , that is, we identify the set

underlying E with [n] itself. Then a linear extension is simply any permutation π of [n]

which preserves the order relations in E . We define

f(π) =
∏

i:π(i)<π(i+1)

(fg(i) + 1) ·
∏

i:π(i)>π(i+1)

fg(i) , (6.12)

where i runs over {1, 2, . . . , n − 1}. Our algorithm amounts to evaluating the risk poly-

nomial by means of the following explicit summation formula.

Theorem 6.15. The risk polynomial R(G; f) equals the sum of the products f(π) where

π runs over all linear extensions of the event poset E.

Proof. The relationship between chains in G and linear extensions of E is the content

of [90, Prop. 3.5.2]. The distributive lattice G has a canonical R-labeling [90, Sec. 3.13]

which assigns to each edge of the Hasse diagram of G the corresponding element of E . In

view of this R-labeling, Exercise 59d in [90, Chap. 3] tells us that the poset G′ = G\{0̂, 1̂}

is chain-partitionable. Each product f(π) as in (6.12) is the generating function for all
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the chains in precisely one part of that chain partition of G′. Adding up all products

gives the generating function for all chains, which is the risk polynomial.

Example 6.16. The event poset E in Figure 6.2 has five linear extensions π:

π f(π)

(1, 2, 3, 4) (1 + f1000)(1 + f1100)(1 + f1110)

(1, 2, 4, 3) (1 + f1000)(1 + f1100)f1101

(2, 1, 3, 4) f0100(1 + f1100)(1 + f1110)

(2, 1, 4, 3) f0100(1 + f1100)f1101

(2, 4, 1, 3) (1 + f0100)f0101(1 + f1101)

The sum of these five products equals the risk polynomial R(G; f).

Implementation

Pruesse and Ruskey [77] showed that the linear extensions of a poset E can be computed

in time linear in the number of linear extensions. Thus, their algorithm computes R(G; f)

in time linear in the size of the output of Theorem 6.15. That output is in factored

form (6.12) and is always more compact than the expanded risk polynomial. In this

manner, we compute the risk polynomial in time sublinear in the size of the expanded

risk polynomial.

To obtain the univariate risk polynomial, we take the sum of the terms (1 +

a)n−1−δaδ, where δ = δ(π) is the number of descents of the linear extension π. Similarly,

the graded risk polynomial R(G; a1, . . . , an−1) is found by keeping track of the descent

set of each linear extension π. We believe that this method is best possible for general

posets E . Notice that the leading term of the univariate risk polynomial is the number

of linear extensions of E , and it is #P-complete to count linear extensions [19].

When E is a directed forest, the recursive structure can be used to help compute

the risk polynomial. In this case, E is built up by the operations of disjoint union and

ordinal sum from the one element poset. For example, in the univariate case, the zeta

polynomial [90, Sec. 3.11] of G behaves nicely under these operations and can be used
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to write down the risk polynomial. Based on these considerations, we can design an

efficient algorithm for computing the univariate risk polynomial of a directed forest.

Using the method of Theorem 6.15, we have developed software for comput-

ing risk polynomials. The input to our program is an arbitrary event poset E , and

the output is the risk polynomial, the graded risk polynomial or the univariate risk

polynomial. Optionally, the user can also input either exact fitness values or upper

and lower bounds for each fitness value. The output in this case is either the exact

risk of escape or upper and lower bounds for the risk. It is designed to integrate

with the package Mtreemix [13], allowing the user to start with data, infer a muta-

genetic tree, and then easily compute the risk polynomial. Our software is available at

http://bio.math.berkeley.edu/riskpoly/We use the algorithm of [101] for comput-

ing linear extensions. Although this algorithm isn’t asymptotically optimal (see [77]), it

is simple to implement and efficient in practice.

6.8 Discussion

We have presented a computational framework for assessing the risk of escape of an

evolving population of pathogens. The risk of escape is the probability that the popula-

tion reaches an escape state before extinction. In virus transmissions, for example, this

probability is the chance of survival in the new host. In the situation of antiretroviral

therapy, the risk of escape is the probability of therapy failure due to the development

of drug resistance.

The general setup we consider for computing the risk of escape includes an

event poset, a fitness landscape on its induced genotype lattice, and a branching process

on this lattice. The event poset E consists of all mutational events that can occur and

encodes the constraints which apply to their order of occurrence. From this structure the

genotype space G is obtained by considering all mutational pathways that respect the

order constraints. This natural construction endows G with the mathematical structure

of a distributive lattice. The risk polynomial, the crucial factor in computing the risk

of escape, turns out to coincide with the chain polynomial of the genotype lattice. We

have presented methods from algebraic combinatorics that exploit this connection and

http://bio.math.berkeley.edu/riskpoly/
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that result in efficient algorithms.

The space of genotypes may also be inferred from observed genotype data us-

ing statistical model selection tools. We have identified a class of Bayesian network

models, the conjunctive Bayesian networks, whose support induces a genotype lattice.

Mutagenetic tree models arise as important special cases. Here, both statistical model

selection and risk computation are particularly efficient, and readily available with ex-

isting software [13] coupled with our implementation of the linear extensions method

(Theorem 6.15).

We have focused on the dependency of the risk polynomial on the fitness land-

scape and considered throughout a homogeneous wild type population prior to interven-

tion. However, the risk of escape is calculated similarly for a quasispecies distribution at

the time of intervention. In fact, this involves computing the risk polynomial of the prior

fitness landscape [54]. In contrast, the branching process model can not account for re-

combination, horizontal gene transfer, or frequency dependent selection, since evolution

is assumed to take place in multiple lineages independently.

The main challenge in using our method to compute the risk of escape from

antiretroviral therapy lies in accurately modeling the fitness landscape. The dependency

(6.11) of the fitness on drug concentration may be improved by experimentally deter-

mined viral replicative capacities in the absence of drugs. An alternative approach to

derive a fitness landscape for HIV-1 proteases is based on estimating the binding affin-

ity of the drug to the mutant protease, and the mutant’s ability to cleave its natural

substrates [82]. These calculations are based on simplified molecular modeling tech-

niques. The resulting fitness landscape does not account for different drug levels, but it

is independent of experimental resistance and fitness data.

Escape from indinavir and ritonavir therapy may in some cases involve muta-

tions other than the seven we considered, although those are the most frequent mutations

observed after therapy failure [25, 66]. On the other hand, viral escape might be accom-

plished with genotypes that harbor fewer than all of the mutations. Thus it would be

desirable to compute the risk of reaching any of several escape states, rather than only

the 11 · · · 1 type. This computation will involve similar techniques to those presented in

Sections 6.4 and 6.7.
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Finally, the PIs form only one out of four distinct classes of antiretroviral drugs

that are in current clinical use. The standard of care is combination therapy with at

least three different drugs from two different drug classes. Modeling the fitness landscape

of combination therapy in terms of viral drug resistance and drug exposure is even

more challenging, but can eventually help in designing optimal antiretroviral therapies.

Algebraic combinatorics offers tools for the mathematical analysis of these biomedical

problems.
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