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Abstract. We consider the directed evolution of a population after an
intervention that has significantly altered the underlying fitness land-
scape. We model the space of genotypes as a distributive lattice; the
fitness landscape is a real-valued function on that lattice. The risk of
escape from intervention, i.e., the probability that the population devel-
ops an escape mutant before extinction, is encoded in the risk polyno-
mial. Tools from algebraic combinatorics are applied to compute the risk
polynomial in terms of the fitness landscape. In an application to the
development of drug resistance in HIV, we study the risk of viral escape
from treatment with the protease inhibitors ritonavir and indinavir.

1. Introduction

The evolutionary fate of a population is determined by the replication
dynamics of the ensemble and by the reproductive success of its individuals.
We are interested in scenarios where most individuals have a low fitness,
eventually leading to extinction, and only a few types of individuals (“escape
mutants”) can survive permanently. These situations often arise due to
a significant change of the underlying fitness landscape. For example, a
virus that has been transmitted to a new host is confronted with a new
immune response. Likewise, medical interventions such as radiation therapy,
vaccination, or chemotherapy result in altered fitness landscapes for the
targeted agents, which may be bacteria, viruses, or cancer cells.

Given a population and such a hostile fitness landscape, the central ques-
tion is whether the population will survive. In the case of medical interven-
tions we wish to know the probability of successful treatment. Answering
this question involves computing the risk of evolutionary escape, i.e., the
probability that the population develops an escape mutant before extinction.
We present a mathematical framework for computing such probabilities.

Our primary application is the evolution of drug resistance during treat-
ment of HIV infected patients [9]. We consider therapy with two different
protease inhibitors (PIs). These compounds interfere with HIV particle
maturation by inhibiting the viral protease enzyme. The effectiveness of PI
therapy is limited by the development of drug resistance. Rapid and highly
error prone replication of a large virus population generates mutants that
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Figure 1. An event poset, its genotype lattice, and a fitness landscape.

resist the selective pressure of drug therapy. PI resistance is caused by mu-
tations in the protease gene that reduce the binding affinity of the drug to
the enzyme. These mutations have been shown to accumulate in a stepwise
manner [6]. For most PIs, no single mutation confers a significant level of re-
sistance, but multiple mutations are required for escape from drug pressure.
Quantitative predictions of the probability of successful PI treatment would
help in finding effective antiretroviral combination therapies. Selecting a
drug combination amounts to controlling the viral fitness landscape.

We regard the directed evolution of a population towards an escape state
as a fluctuation on a fitness landscape. The space of genotypes is modeled
as follows. We start with a finite partially ordered set (poset) E whose
elements are called events. The events are non-reversible mutations with
some constraints on their order of occurrence. Such constraints are primarily
due to epistatic effects between different loci in a genome [7]. The event
constraints define the poset structure: e1 < e2 in E means that event e1

must occur before event e2 can occur. Each genotype g is represented by a
subset of E , namely, the set of all events that occurred to create g. Thus a
genotype g is an order ideal in the poset E . The space of genotypes G is the
set of all order ideals in E , which is a distributive lattice [27, Sec. 3.4]. The
order relation on G is set inclusion and corresponds to the accumulation
of mutations. This mathematical formulation is reasonable in the above
situations, where a population is exposed to strong selective pressure.

The risk of escape is governed by the structure of G, the fitness function
on G, and the population dynamics (such as the mutation rates and pop-
ulation size). Our focus is on the dependency of the risk of escape on the
assigned fitness values for each genotype g ∈ G. This leads us to the risk
polynomial, which is shown to be equivalent to a well-known object in alge-
braic combinatorics. Indeed, one of the objectives of this work is to provide
a bridge between algebraic combinatorics and evolutionary biology.

This paper is organized as follows. In Section 2 we formalize our model
of a static fitness landscape on the genotype lattice G derived from an event
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poset E , and we discuss evolution on the lattice G. In Section 3 we review the
multistate branching process studied by Iwasa, Michor and Nowak [14, 15].

In Section 4 we study the Bayesian networks which arise from identifying
the events in E with binary random variables. These statistical models
can be used to infer the genotype space from given data. For conjunctive
Bayesian networks we recover the distributive lattice of order ideals in E . Of
particular interest is the case where E is a directed forest: here the Bayesian
network is a mutagenetic tree model [3, 4]. The application of our methods
to the development of PI resistance in HIV is presented in Section 5.

Section 6 deals with various representations of the risk polynomial in
terms of structures from algebraic combinatorics. Efficient methods for com-
puting the risk polynomial and their implementation are presented.

2. Fitness landscapes on distributive lattices

A partially ordered set (or poset) is a set E together with a binary relation,
denoted “≤”, which is reflexive, antisymmetric, and transitive. Here we fix a
finite poset E whose elements are called events. If the number of events is n
then we often identify the set underlying E with the set [n] = {1, 2, . . . , n}.
In this way, the subsets of E are encoded by the 2n binary strings of length
n. The empty subset of E is encoded by the all-zero string 0̂ = 00 · · · 0 which
represents the wild type, and the full set E is encoded by the all-one string
1̂ = 11 · · · 1 which represents the escape state.

An order ideal g in a poset E is a subset of E that is closed downward;
that is, if e2 ∈ g and e1 ≤ e2, then e1 ∈ g. The set of all order ideals of E
forms a distributive lattice J(E) under inclusion. Birkhoff’s Representation
Theorem [27, Thm. 3.4.1] states that all distributive lattices have the form
J(E) for a poset E . We write G = J(E), and we call G the genotype lattice.

Example 1. Let E be the trivial poset, where no two events are comparable,
with |E| = n. Then G = J(E) is the Boolean lattice consisting of all subsets
of E ordered by inclusion. This means that all possible combinations of
mutations are possible, and they can occur in any order. Each of the 2n

binary strings g ∈ {0, 1}n represents a mutational pattern, or genotype.

In general, the event poset E does have non-trivial relations e1 < e2. The
relation e1 < e2 excludes all genotypes g with ge1 = 0 and ge2 = 1 from G.
The remaining genotypes g form a sublattice of the Boolean lattice {0, 1}n,
and this is precisely our distributive lattice G = J(E). Note that the lattice
G is ranked, with the rank function given by rank(g) = |g|.

Example 2. Consider a scenario with n = 4 mutation events, labeled E =
{1, 2, 3, 4}. Suppose that event 3 can only occur after events 1 and 2, and
event 4 can only occur after event 2. This allows for precisely eight genotypes

G =
{

0000, 1000, 0100, 1100, 0101, 1110, 1101, 1111
}

.

The event poset E and the genotype lattice G are shown in Figure 1.
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A fitness landscape associates to each possible genotype a number which
quantifies the reproductive capacity of an individual with that genotype [23].
We define a fitness landscape on the distributive lattice G to be any function
f : G → R. The value f(g) at any g ∈ G is the fitness of the genotype g. Thus,
the space of all fitness landscapes is the finite-dimensional vector space R

G.
We shall consider certain special models of fitness landscapes, which are

represented by linear subspaces of R
G . In the following definitions, a geno-

type g is regarded as a subset of the event poset E , where |E| = n. A
constant fitness landscape has the form f(g) ≡ a for some constant a. Thus
the constant landscapes form a line through the origin in R

G. A graded fit-
ness landscape is a landscape on G whose fitness values depend only on the
rank. Equivalently, we have f(g) = a|g| for constants a0, a1, . . . , an. Thus,

graded fitness landscapes form an (n+1)-dimensional linear subspace of R
G.

Our biological application in Section 5 uses the graded fitness landscape
model, which means that the fitness of a virus type depends only on the
number of mutations it harbors. We shall model situations where a virus
escapes from a wild type 0̂ to a drug-resistant type 1̂. In this case, we assume
a graded fitness landscape that is monotonically increasing with rank, i.e.,

a0 < a1 < a2 < · · · < an.

This implies that the fitness landscape f has a unique local (and global)

maximum at the drug resistant type 1̂, which is the top element in G.
We next introduce the mathematical framework for evolution on a fitness

landscape. The general setup is as in the work of Reidys and Stadler [23],
but this is adapted here to our specific situation, where the genotypes form
a distributive lattice G. The order relation on G, which comes from inclusion
of subsets of E , induces a neighborhood structure on G where the neighbors
of g ∈ G are the genotypes that strictly contain g,

(1) N(g) :=
{

h ∈ G | g ⊂ h
}

.

Unlike the typical situation considered in [23], this notion of neighborhood
is not symmetric. To be precise, we have that h ∈ N(g) implies g 6∈ N(h).

This neighborhood structure implies that mutational changes are possible
only upward in the genotype lattice. This structure models a directed evolu-
tionary process from the wild type 0̂ towards the escape state 1̂. Typically,
our configuration space G is a small subset of the Boolean lattice {0, 1}n of
all binary strings. Indeed, in the course of viral evolution, a population will
visit only a small fraction of {0, 1}n, as most mutants are not viable.

Suppose that the number of genotypes in G is m. We wish to define
dynamics between the states of G. To this end, we fix a linear extension of
G, and we introduce an m×m matrix of transition rates, written U = (ugh),
whose rows and columns are indexed by genotypes g, h ∈ G. Each entry ugh

of the matrix U is a non-negative real number which is zero unless h ∈ N(g).
In the framework of algebraic combinatorics, it is convenient to think of the
matrix U as an element in the incidence algebra of G; see [27, Sec. 3.6].
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We further assume that the non-zero mutation rates ugh depend only on
the events in h\g. Equivalently, the rate at which a collection of mutation
events occurs is independent of which other mutations have already occurred.
With this assumption, there are only n free parameters µ1, . . . , µn in the
matrix U, where µe is the mutation rate of event e. Then

(2) ugh =

{

∏

e∈h\g µe if g ⊂ h

0 otherwise.

In particular, if all rates are the same, say µ = µ1 = · · · = µn, then the
entries of U are ugh = µ|h\g| if g ⊂ h and ugh = 0 otherwise.

Example 3. For the genotype lattice G in Figure 1, the matrix U equals

























0000 1000 0100 1100 0101 1110 1101 1111

0000 0 µ1 µ2 µ1µ2 µ2µ4 µ1µ2µ3 µ1µ2µ4 µ1µ2µ3µ4

1000 0 0 0 µ2 0 µ2µ3 µ2µ4 µ2µ3µ4

0100 0 0 0 µ1 µ4 µ1µ3 µ1µ4 µ1µ3µ4

1100 0 0 0 0 0 µ3 µ4 µ3µ4

0101 0 0 0 0 0 0 µ1 µ1µ3

1110 0 0 0 0 0 0 0 µ4

1101 0 0 0 0 0 0 0 µ3

1111 0 0 0 0 0 0 0 0

























Note that the entry in row g and column h of any power Uk equals ugh times
the number of paths of length k from g to h in G. In particular, U5 = 0.

Let f be a fitness landscape on G and F = diag
(

f(g) | g ∈ G
)

the m×m-
diagonal matrix whose entries are the fitness values. The entry of the matrix
product UF in row g and column h represents the probability of genotype g
transitioning into genotype h in one step. A precise probabilistic derivation
and interpretation will be given in the next section.

We are interested in all mutational pathways that lead from the wild type
0̂ to the escape state 1̂. Towards this end, note that the entry (g, h) of the
matrix (UF)k represents the probability of genotype g evolving to genotype
h along any mutational pathway (chain) of length k in the genotype lattice

G. The chains from 0̂ to 1̂ in G are accounted for by the upper right hand
entry of (UF)k. Note that the matrix (UF)k is zero for k > n.

To account for chains of arbitrary length, we consider the matrix

(3) (I − UF)−1 − I = UF + (UF)2 + (UF)3 + · · · + (UF)n,

where I is the m × m identity matrix. We summarize our discussion in the
following proposition, which is proved by elementary matrix algebra.

Proposition 4. The entry of the matrix (3) in row g and column h is zero
unless g ⊂ h, in which case it is ugh · f(h) ·Pgh(f) where Pgh is a polynomial

function of degree |h\g| − 1 on the space of all fitness landscapes R
G.
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The polynomial Pgh(f) is the generating function for all chains from g
to h in G. This will be made precise in the following corollary. We shall
restrict ourselves to the most important case when g = 0̂ is the wild type
and h = 1̂ is the escape state. Studying P0̂1̂(f) only is no loss of generality
because any interval of a distributive lattice is again a distributive lattice.

Proposition 4 tells us that P0̂1̂(f) is a polynomial of degree n − 1 in the
unknown fitness values f(g), which are also written as fg, where g ∈ G.

Corollary 5. The polynomial P0̂1̂(f) in the upper-right entry of (3) equals

(4) P0̂1̂(f) =
∑

0̂=g0⊂g1⊂···⊂gk=1̂

fg1fg2 · · · fgk−1
,

where the sum runs over all chains from 0̂ to 1̂ in the genotype lattice G.

3. The risk of escape

For a poset of events E and the corresponding distributive lattice G =
J(E), the risk polynomial of G is defined as the polynomial (4), which we
denote by R(G; f). The risk polynomial was introduced in [14, 15]. In
this section we review the evolutionary dynamics model proposed in these
papers, and we discuss the probabilistic meaning of the risk polynomial.

Example 6. Let G be the genotype lattice in Figure 1. Then the risk poly-
nomial R(G; f) is the following polynomial of degree three in six unknowns:

1 + f1000 + f0100 + f1100 + f0101 + f1110 + f1101

+f1000f1100 + f0100f1100 + f0100f0101 + f1000f1110 + f0100f1110

+f1000f1101 + f0100f1101 + f1100f1110 + f1100f1101 + f0101f1101

+f1000f1100f1110 + f0100f1100f1110 + f1000f1100f1101

+f0100f1100f1101 + f0100f0101f1101.

If we restrict the fitness landscape f to lie in a linear subspace of R
G , then

R(G; f) specializes to a polynomial in fewer unknowns. For example, the risk
polynomial for graded fitness landscapes is obtained from the specialization
f(g) = a|g|. That risk polynomial has degree n − 1 and is denoted by
R(G; a1, . . . , an−1). For instance, R(G; f) in Example 6 specializes to

R(G; a1, a2, a3) = 1 + 2a1 + 2a2 + 2a3 + 3a1a2 + 4a1a3 + 3a2a3 + 5a1a2a3.

For constant fitness landscapes f ≡ a , the risk polynomial is a polynomial
in one unknown a. It is denoted R(G; a). In our running example,

R(G; a) = 1 + 6a + 10a2 + 5a3.

We now make precise the notion of risk of escape, which will justify our
definition of the risk polynomial. Our derivation is based on the model for
the dynamics of a replicating population on a fitness landscape studied by
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Iwasa, Michor and Nowak [14, 15]. See also the work of Wilke [31] and the
references given therein for approaches to computing fixation probabilities.

A multistate branching process [1, 16] consists of a set of genotypes along
with a fitness landscape and mutation rates between genotypes. We assume
a discrete time process, where in one generation an individual with genotype
g has a random number of offspring following a Poisson distribution with
mean Rg. Some of these offspring may be mutants according to the mutation
rates ugh. The parameter Rg is the basic reproductive ratio [20, Chapter 3].

We assume there is no interaction between individuals, each reproduces
at a rate independent of the distribution of the population. Let ρk

g,h be the
probability that one individual of genotype g has k children of type h. Then,

(5) ρk
g,h =

(ughRg)
k · e−ughRg

k!
.

The reproductive fitness fg is related to the reproductive ratio Rg by

(6) fg =
Rg

1 − Rg
and Rg =

fg

1 + fg
.

Let ξg be the probability of escape starting with one individual of genotype
g, so 1−ξg is the probability of extinction. In particular, ξ1̂ is the probability
that one resistant virus will not become extinct. Each of these probabilities
is a function of the mutation rates ugh and the reproductive ratios Rg. We
assume that the ugh are as in (2), but with ugg = 1. Thus, each escape
probability ξg can be expressed as a function of the µe for e ∈ E and (using
the relation (6)) the fitness values fg for g ∈ G.

Theorem 7. If ξg ≪ 1 for g 6= 1̂, then the probability of escape on the

fitness landscape f ∈ R
G starting with one individual of wild type 0̂, satisfies

(7) ξ0̂ ≈ ξ1̂ · f0̂ ·
∏

e∈E

µe · R(G; f).

Proof. The probability of extinction satisfies the recursive formula

(8) 1 − ξg =
∏

h⊇g

∞
∑

k=0

(1 − ξh)k · ρk
g,h.

Using (5), the right hand side of (8) can be rewritten as follows:

(9)
∏

h⊇g

exp((1 − ξh)ughRg) · exp(−ughRg) = exp





∑

h⊇g

−ξhughRg



 .

We conclude that

log(1 − ξg) = −
∑

h⊇g

ξhughRg for all g ∈ G.



8 BEERENWINKEL, ERIKSSON, AND STURMFELS

Under the assumption that ξg ≪ 1 for g 6= 1̂, we can linearize the logarithms

using the relation log(1 − ξg) ≈ −ξg. This implies, for g ∈ G\{1̂},

ξg ≈ Rg ·
∑

h⊇g ξhugh

=
Rg

1−Rgugg
·
∑

h⊃g ξhugh

= fg ·
∑

h⊃g ξhugh.

The theorem now follows by setting g = 0̂ and expanding the last equation
recursively. Here we are using the fact from (2) that the product of the ugh

over any chain from 0̂ to 1̂ in G equals
∏

e∈E µe. �

The typical situation of interest is a fitness landscape for which only the
escape state has a basic reproductive ratio greater than one, i.e.,

R1̂ > 1 and Rg < 1 for all g 6= 1̂.

When the positive numbers Rg are very small for g ∈ G\{1̂} then the approx-
imation (7) is valid, and it shows the crucial role that the risk polynomial
R(G; f) plays in assessing the risk of escape from the wild type 0̂ to the

escape state 1̂. The theorem implies that the risk of escape of a population
of N wild type viruses is (1− ξ0̂)

N . In Section 7 we discuss the situation in
which the population is not homogeneous at the time of intervention.

4. Distributive lattices from Bayesian networks

In this section, we present a family of statistical models that naturally
gives rise to distributive lattices. This statistical interpretation provides a
method for deriving the genotype lattice G directly from data. The basic
idea is to estimate the poset structure on E from observed genotypes, by
applying model selection techniques to a range of Bayesian networks, and to
define G as the set of all genotypes with non-zero probability in the model.

We first make precise the derivation of a genotype space from a statis-
tical model. Let E be an unordered set of n genetic events. The events
are labeled by 1, 2, . . . , n. Subsets of E are identified with binary strings
g ∈ {0, 1}n. They are the possible genotypes. We consider binary random
variables XE = (X1, . . . ,Xn), where Xe = 1 indicates the occurrence of event
e. Let ∆ denote the (2n−1)-dimensional simplex of probability distributions
on {0, 1}n. A statistical model for XE is a map p : Θ → ∆, where Θ is some
parameter space. The g-th coordinate of p, denoted pg, is the probability of
genotype g ∈ {0, 1}n under the model p. The induced genotype space of the
model p : Θ → ∆ is the set Gp of all strings g ∈ {0, 1}n such that pg is not
the zero function on Θ. We regard Gp as a poset ordered by inclusion.

Now consider a directed acyclic graph on the set of events E . We will also
call this graph E . The Bayesian network model, or directed acyclic graphical
model, defined by E is the family of joint distributions that factor as

Pr(X1, . . . ,Xn) =
∏

e∈E

Pr(Xe | Xpa(e)),
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where pa(e) denotes the set of parents of e in E . Equivalently, a Bayesian net-
work is specified by a set of conditional independence statements. Each node
is independent of its ancestors given its parents. See [17] for an introduction
to the relevant statistical theory and [13] for an algebraic perspective.

The parameters for a Bayesian network are specified by providing, for
each event e ∈ E , a 2|pa(e)| × 2 matrix θe. The matrix entries are

θe
gpa(e),ge

= Pr
(

Xe = ge | Xpa(e) = gpa(e)

)

,

for gpa(e) ∈ {0, 1}pa(e), ge ∈ {0, 1}. These conditional probabilities satisfy

(10) θe
gpa(e),0

≥ 0 , θe
gpa(e),1

≥ 0 and θe
gpa(e),0

+ θe
gpa(e),1

= 1.

Set d =
∑

e∈E 2|pa(e)| and Θ = [0, 1]d. The points in the cube Θ are
identified with n-tuples of matrices θ = (θe | e ∈ E) as above. The general
Bayesian network is the polynomial map p : Θ → ∆ whose coordinates are

(11) pg(θ) =
∏

e∈E

θe
gpa(e),ge

.

The general Bayesian network on E induces the genotype space Gp = {0, 1}n,
the Boolean lattice on E . Indeed, the factorization (11) implies that no
genotype g ∈ {0, 1}n has probability zero for all parameter values.

To obtain other genotype spaces, we replace the cube Θ = [0, 1]d by one
of its faces, as follows. For each event e ∈ E consider a Boolean function
βe : {0, 1}pa(e) → {0, 1}. If βe(ge) = 0 then the row of the 2|pa(e)| × 2-matrix
θe indexed by the genotype g is fixed to be the vector (1, 0); otherwise
that row remains indeterminate subject to the constraints (10). Let Θβ

denote the face of Θ determined by these requirements and pβ : Θβ → ∆
the restriction of the polynomial map p to Θβ. The resulting model is the
Bayesian network on E constrained by the Boolean functions βe.

If all Boolean functions βe are disjunctions then we get the disjunctive
Bayesian network on E . In this model, an event e can only occur if at least
one of its parent events has already occurred. If all Boolean functions βe

are conjunctions then we get the conjunctive Bayesian network on E . In
this model, an event e can only occur if all of its parent events have already
occurred. These restricted Bayesian network models induce interesting geno-
type spaces. Our main result in this section concerns the conjunctive case.

We regard the given directed acyclic graph E as a poset by setting e1 ≤ e2

if there exists a path from e1 to e2. We write pconj : [0, 1]n → ∆ for the
conjunctive Bayesian network on E , since it has precisely n free parameters.

Theorem 8. The genotype space induced by the conjunctive Bayesian net-
work on E is the distributive lattice of order ideals in E, i.e., Gpconj = J(E).

Proof. The possible genotypes g are binary strings whose coordinates ge

indicate whether or not the event e has occurred. If p is any of the Bayesian
network models discussed above, then (11) implies that g ∈ Gp if and only
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if each θe
gpa(e),ge

is non-zero. Consider now the conjunctive model p = pconj.

Here, the conditional probability θe
gpa(e),ge

is non-zero if and only if ge = 1

implies gpa(e) = (1, . . . , 1). This is precisely the condition for g to be an
order ideal in E . Thus Gp is the distributive lattice of order ideals of E . �

The following example illustrates Theorem 8, and it compares the geno-
type spaces induced by the disjunctive and the conjunctive Bayesian net-
work. The former is not a distributive lattice, but the latter always is.

Example 9. Let E be the event poset in Figure 1. The general Bayesian
network model defined by E is parametrized by the following four matrices:

θ1 =
(

a 1 − a
)

,

θ2 =
(

b 1 − b
)

,
θ3 =









c00 1 − c00

c01 1 − c01

c10 1 − c10

c11 1 − c11









, θ4 =

(

d0 1 − d0

d1 1 − d1

)

.

The map p : [0, 1]8 → ∆ has coordinates

p0000 = abc00d0, p0001 = abc00(1 − d0),

p0010 = ab(1 − c00)d0, p0011 = ab(1 − c00)(1 − d0),

p0100 = a(1 − b)c01d1, p0101 = a(1 − b)c01(1 − d1),

p0110 = a(1 − b)(1 − c01)d1, p0111 = a(1 − b)(1 − c01)(1 − d1),

p1000 = (1 − a)bc10d0, p1001 = (1 − a)bc10(1 − d0),

p1010 = (1 − a)b(1 − c10)d0, p1011 = (1 − a)b(1 − c10)(1 − d0),

p1100 = (1 − a)(1 − b)c11d1, p1101 = (1 − a)(1 − b)c11(1 − d1),

p1110 = (1 − a)(1 − b)(1 − c11)d1, p1111 = (1−a)(1−b)(1−c11)(1−d1).

This Bayesian network is the network # 20 in the classification of [13, Sec. 5].
The proof of Theorem 10 in [13] shows that the homogeneous prime ideal of
this model is minimally generated by 16 quadratic polynomials, including

p0001p0010 − p0000p0011 , p1000p1011 − p1001p1010 , and

(p0001 + p0111)(p1101 + p1011) − (p0001 + p0111)(p1101 + p1011).

The disjunctive Bayesian network is the six-dimensional submodel ob-
tained by setting c00 = 1 and d0 = 1. This substitution implies

p0001 = p0010 = p0011 = p1001 = p1011 = 0.

The genotype space Gpdisj consists of the remaining eleven strings in {0, 1}4.
Note that Gpdisj is not a lattice because it is not closed under intersections.
For instance, 1010 and 0110 are in Gpdisj but 0010 = 1010 ∩ 0110 6∈ Gpdisj.

The conjunctive Bayesian network is the four-dimensional submodel ob-
tained by setting c00 = c01 = c10 = d0 = 1. The remaining eight non-zero
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probabilities are indexed by the eight genotypes in Figure 1:

p0000 = ab , p0100 = a(1 − b)c01d1 ,

p0101 = a(1 − b)c01(1 − d1) , p1000 = (1 − a)bc10 ,

p1100 = (1 − a)(1 − b)c11d1 , p1101 = (1 − a)(1 − b)c11(1 − d1) ,

p1110 = (1 − a)(1 − b)(1 − c11)d1 , p1111 = (1−a)(1−b)(1−c11)(1−d1).

The homogeneous prime ideal of this conjunctive Bayesian network equals

〈 p0101p1110 − p0100p1111 , p1101p1110 − p1100p1111 , p0101p1100 − p0100p1101

p0101p1000 − p0000p1101 − p0000p1111 , p0100p1000 − p0000p1100 − p0000p1110〉.

These five quadrics are a Gröbner basis for the underlined leading terms.

It would be interesting to study Bayesian models restricted by Boolean
functions βe from the point of view of algebraic statistics [21], and, in par-
ticular, to compute the homogeneous prime ideals for the conjunctive and
disjunctive Bayesian networks arising from arbitrary event posets E .

When E is a directed forest, this problem has a nice solution, to be dis-
cussed in Proposition 11 below. Being a directed forest means that every
e ∈ E has at most one parent. In this case, we can augment E to a tree ET

by adding an auxiliary root node 0 which points to the roots of the forest.
On the resulting tree ET we consider the mutagenetic tree model of [4, 11].

Proposition 10. If E is a directed forest then the following three statistical
models coincide: the disjunctive Bayesian network on E, the conjunctive
Bayesian network on E, and the mutagenetic tree model on ET .

Proof. The disjunctive and the conjunctive networks coincide because they
are defined by the same specializations of the parameters θe. The identifi-
cation with the mutagenetic tree model follows from [3, Thm. 14.6]. �

Mutagenetic tree models can be learned from observed data by an efficient
combinatorial algorithm. With appropriate edge weights that depend on the
pairwise probabilities of events, a mutagenetic tree can be obtained as the
maximum weight branching rooted at 0 in the complete graph on {0, . . . , n};
see [11]. This gives an efficient method for learning the poset E , and hence
the genotype lattice G = J(E), from data. It would be interesting to extend
this model selection technique to arbitrary conjunctive Bayesian networks.

We finish this section by relating the algebraic geometry of the muta-
genetic tree model to the risk polynomial. This model is specified by the
polynomial map p : [0, 1]n → ∆ described above. We are interested in the
prime ideal Ip of all homogeneous polynomials in R[ pg : g ∈ G] that vanish
on the image of p. The following result was proved in [3, Thm. 14.11].

Proposition 11. The ideal Ip of the conjunctive Bayesian network (muta-
genetic tree model) on a directed forest E is generated by the binomials

pg · ph − pg∪h · pg∩h for g, h ∈ G with g and h not comparable.

These binomials are a Gröbner basis of Ip for the underlined leading terms.
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Recall that a monomial is standard with respect to a Gröbner basis if it is
not divisible by any of the leading terms of the polynomials in the Gröbner
basis. A monomial is squarefree if it is the product of distinct unknowns.

Corollary 12. The risk polynomial of the genotype lattice induced by a
directed forest is the sum over all squarefree monomials that are standard
with respect to the Gröbner basis in Proposition 11.

Proof. In this statement we identify the unknown probability pg with the
unknown fitness value fg. A product of unknowns pg is not divisible by any
of the underlined leading terms pg · ph if and only if their indices form a
chain in G. By Corollary 5, these products are the terms in R(G; f). �

5. Applications to HIV drug resistance

We investigate the development of resistance during treatment of HIV
infected patients with two different PIs. Consider the seven genetic events

E = {K20R, M36I, M46I, I54V, A71V, V82A, I84V} ,

where K20R stands for the amino acid change from lysine (K) to arginine (R)
at position 20 of the protease chain, etc. The occurrence of these mutations
confers broad cross-resistance to the entire class of PIs. Appearance of the
virus with all 7 mutations renders most of the PIs ineffective for subsequent
treatment. We analyze the risk of reaching this escape state under therapy
with the PIs ritonavir (RTV) and indinavir (IDV) [10, 19].

We use mutagenetic trees for estimating preferred mutational pathways
and for defining genotype lattices. For both drugs, a tree ET is learned from
genotypes derived from patients under the respective therapy. We used 112
and 691 samples from the Stanford HIV Drug Resistance Database [24] for
ritonavir and indinavir, respectively. Figure 2 shows the inferred mutage-
netic trees. The models indicate that the evolution of ritonavir resistance
is partly a linear process, whereas indinavir resistance develops in a less
ordered fashion. This is consistent with previous studies [10, 19]. The geno-
type lattices G have size 16 for ritonavir and 45 for indinavir. We study the
risk polynomials on these lattices under different fitness landscape models.

For the constant fitness landscape on G\{0̂, 1̂}, we obtain

RRTV(a) = 15a6 + 70a5 + 131a4 + 124a3 + 61a2 + 14a + 1,

RIDV(a) = 420a6 + 1470a5 + 1970a4 + 1250a3 + 372a2 + 43a + 1.

Thus, the risk of developing all seven PI resistance mutations is higher under
indinavir therapy than under ritonavir: RIDV(a) > RRTV(a) for a > 0.
Intuitively, the risk under ritonavir is lower because the mutations must
occur in a certain order. Likewise, the high risk under indinavir results
from many mutations occurring independently, which gives rise to a large
genotype lattice and to many mutational pathways from the wild type to
the escape state.
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Figure 2. Mutagenetic tree ET for the development of resis-
tance to (a) ritonavir and (b) indinavir in the HIV-1 protease.
The event poset E is obtained by removing the root node “0”.

More realistic fitness landscapes may be derived by modeling viral fitness
as a function of drug concentration. We follow the approach pursued in [28]
and use a simple saturation function for this dependency. Specifically, we
assume viral fitness to be the following function of drug concentration D,

(12) fg(D) =
φg

1 + D/rg

,

where φg denotes the fitness of genotype g in the absence of drug and rg

the IC50 value of g, i.e., the drug concentration necessary to inhibit viral
replication in vitro by 50%. The IC50 value is a measure of resistance. We
will assume throughout that all φg ≡ φ are equal. If we assume, in addition,

that the resistance landscape is constant on G\{0̂, 1̂}, with rg ≡ r, then the
substitution (12) turns the risk polynomial into a rational function in φ, D,
and r. For example, for ritonavir, this rational function is

(15φ2r2 + 10φDr + 10φr2 + D2 + 2Dr + r2)(φr + D + r)4

(D + r)6
.

In general, the IC50 values rg are distinct and can be determined experi-
mentally for some genotypes by phenotypic resistance testing [30], and may
be predicted for all genotypes using regression techniques [2]. PI pheno-
typic resistance data suggests a graded resistance landscape; see [6] and [10,
Tab. 3]. Hence, we estimate the resistance r ∈ R

8 for ritonavir and indinavir
by defining rk as the mean predicted IC50 of all genotypes of rank k. The
resulting resistance landscapes are shown in Figure 3.

The graded risk polynomials R(a1, a2, a3, a4, a5, a6) have 64 terms. After
substituting ak = φ/(1 + D/rk), we obtain rational risk functions in D
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Figure 3. Graded resistance landscapes for ritonavir (RTV,
bullets) and indinavir (IDV, squares). Resistance is quanti-
fied as the drug concentration necessary to inhibit viral repli-
cation in vitro by 50% (IC50).

with parameter φ. Figure 4 illustrates the dependency of the risk on drug
concentration for three different values of φ. For both drugs we indicate
published mean plasma trough (Cmin) and peak (Cmax) levels observed in
clinical settings.

This example illustrates how the risk polynomial can be used to study
viral escape as a function of different parameters. For instance, given a
pharmacokinetics model of antiretroviral drug therapy, we can compute the
risk of developing resistance after a patient has missed a dose. Thus, our
mathematical framework may help in designing robust drug combinations.

6. Combinatorics and computation of the risk polynomial

In this section we discuss mathematical properties of the risk polynomial
and we present several methods for computing it. The given data consists
of a poset E whose elements are n events, and the induced genotype lattice
G, which is the distributive lattice of order ideals in E . We assume that
G has m elements, which are encoded either as subsets of E or as binary
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Figure 4. Drug dependent risk. The log of the risk poly-
nomial for ritonavir (a) and indinavir (b) is displayed as a
function of plasma drug concentration D. Marked values de-
note mean trough (Cmin) and peak (Cmax) levels observed in
clinical studies. The parameter φ is the relative fitness of
mutants as compared to the wild type in the absence of drug.

strings in {0, 1}n. The general risk polynomial R(G; f) is a polynomial in
the m unknowns fg = f(g), one for each genotype g. We are also interested
in various specializations of R(G; f) obtained by setting some (or all) of the
unknowns equal to each other, such as the graded risk polynomial and the
univariate risk polynomial.

A direct method for computing the risk polynomial is given in Section 3.
Namely, we can set all µe equal to one in the matrix U and then compute
the upper right entry of the matrix (I − UF)−1 − I of equation (3). In
practice, one would compute this entry by a dynamic program which runs
in time O(m2). That dynamic program is easily derived by resolving the
recursion in the last equation of the proof of Theorem 7.

The following alternative linear algebra technique for computing poly-
nomials similar to our risk polynomials was given by Stanley in [26]. Let

G′ = G\{0̂, 1̂} denote the genotype lattice with the top element 1̂ and the
bottom element 0̂ removed. We define A to be the anti-adjacency matrix of
the truncated genotype lattice G′. Thus A is the (m − 2) × (m − 2)-matrix
with rows and columns indexed by G′, and whose entry in row g and column
h is 0 if g ⊂ h and is 1 otherwise. We write I for the (m− 2)× (m− 2) iden-
tity matrix and F′ = diag

(

f(g) | g ∈ G′
)

for the (m− 2)× (m− 2)-diagonal
matrix whose entries are the fitness values. Stanley’s result reads as follows.

Theorem 13 (Stanley [26]). The risk polynomial R(G; f) equals the deter-
minant of the (m − 2) × (m − 2)-matrix I + F′ · A.
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Example 14. Let G be the genotype lattice in Figure 1. Then m = 8 and
I + F′ ·A is the 6 × 6-matrix

















1000 0100 1100 0101 1110 1101

1000 1 + f1000 f1000 0 f1000 0 0
0100 f0100 1 + f0100 0 0 0 0
1100 f1100 f1100 1 + f1100 f1100 0 0
0101 f0101 f0101 f0101 1 + f0101 f0101 0
1110 f1110 f1110 f1110 f1110 1 + f1110 f1110

1101 f1101 f1101 f1101 f1101 f1101 1 + f1101

















.

The determinant of this matrix is the risk polynomial of Example 6.

A more conceptual way of thinking about the risk polynomial is based on
the following algebraic construction. The Stanley-Reisner ideal IG′ of G′ is
the ideal generated by all quadratic monomials fg · fh where g and h are
genotypes that are incomparable, i.e., neither g ⊆ h nor h ⊆ g holds. The
ambient polynomial ring S = R[f ] is generated by the unknowns fg where
g ∈ G′. The Hilbert series of IG′ is the formal sum over all monomials
fu =

∏

g∈G′ f
ug
g which are not in the ideal IG′ . This is a formal generating

function which can be written as a rational function of the following form

H(S/IG′ ; f) =
KG(f)

∏

g∈G′(1 − fg)
.

Here KG(f) is a polynomial in the unknowns fg with integer coefficients. The
polynomial KG(f) is known as the K-polynomial of the ideal IG′ . We refer to
[18] for an introduction to Stanley-Reisner ideals and their K-polynomials.

If E is a directed forest (and we identify fg = pg) then Proposition 11
shows that the ideal IG′ is an initial monomial ideal of the conjunctive
Bayesian network on E . We conjecture that this holds for all event posets.

Example 15. Let G be the genotype lattice in Figure 1. Then

IG′ = 〈 f0101f1110, f1101f1110, f0101f1100, f0101f1000, f0100f1000〉.

Comparing these monomials to the underlined initial monomials in Exam-
ple 9, we see that IG′ is precisely the initial monomial ideal of the conjunctive
Bayesian network in that example. The K-polynomial KG(f) equals

1 − f0101f1110 − f1101f1110 − f0101f1100 − f0101f1000 − f0100f1000

+f0100f1000f0101 + f1000f0101f1100 + f1000f0101f1110 + f0101f1100f1110

+f0101f1110f1101 + f0100f1000f1110f1101

−f1000f0101f1100f1110 − f0100f1000f0101f1110f1101.

Just as in the proof of Corollary 12, we see that the risk polynomial
R(G; f) is the sum of all squarefree monomials in the expansion of the Hilbert
series H(S/IG′ ; f). Equivalently, R(G; f) is the reduction of H(S/IG′ ; f)
modulo the ideal generated by the squares f2

g of the unknowns. Since

1/(1 − fg) equals 1 + fg modulo 〈 f2
g 〉, we have the following result.
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Proposition 16. The risk polynomial R(G; f) of the genotype lattice G is
the sum of all squarefree terms in the expansion of

KG(f) ·
∏

g∈G′

(1 + fg),

where KG(f) is the K-polynomial of the Stanley-Reisner ideal IG′.

The univariate risk polynomial R(G; a) is derived from R(G; f) by re-
placing each fg by the scalar unknown a. We have

R(G; a) = c0 + c1a + c2a
2 + · · · + cn−1a

n−1,

where ci is the number of chains of length i in G′. Thus, (c0, . . . , cn−1) is
the f -vector of the simplicial complex of chains in G′. Likewise, we get
the graded risk polynomial from R(G; f) by replacing each fg by a|g|. We
note that the graded risk polynomial is closely related to Ehrenborg’s quasi-
symmetric function encoding [12] of the flag f -vector of the chain complex
of G′.

One advantage of both Theorem 13 and Proposition 16 is that these
formulas do not actually depend on the fact that G is a distributive lattice.
They also apply if the set G of genotypes is an arbitrary poset. This is
relevant for our discussion of the statistical models in Section 4, where we
introduced a more general class of posets Gp ⊆ {0, 1}n.

This advantage is also a disadvantage: Theorem 13 and Proposition 16
do not give the most efficient methods for computing R(G; f) when G is
the distributive lattice induced by an event poset E . In what follows we
present a specialized and more efficient algorithm for the risk polynomial.
The input to this algorithm consists of the event poset E . It is not necessary
to compute the genotype lattice G as this will be done as a byproduct of our
approach, which is to compute the risk polynomial R(G; f) directly from E .

As before, we assume that E has n elements, and we write [n] for the lin-
early ordered set {1, 2, . . . , n}. A linear extension of E is an order-preserving
bijection π : E → [n]. This means that e < e′ in E implies π(e) < π(e′). Ev-
ery linear extension π : E → [n] gives rise to an ordered list of n−1 genotypes

g(1), g(2), . . . , g(n−1) in G′ = G\{0̂, 1̂} as follows. The genotype g(i) is the
subset of E consisting of all events whose image under π is among the first
i positive integers. In symbols, g(i) = π−1({1, 2, . . . , i}). The sequence

g(1), g(2), . . . , g(n−1), derived from π, represents a mutational pathway in G.
We now fix one distinguished linear extension of E , that is, we identify

the set underlying E with [n] itself. Then a linear extension is simply any
permutation π of [n] which preserves the order relations in E . We define

(13) f(π) =
∏

i:π(i)<π(i+1)

(fg(i) + 1) ·
∏

i:π(i)>π(i+1)

fg(i) ,

where i runs over {1, 2, . . . , n − 1}. Our algorithm amounts to evaluating
the risk polynomial by means of the following explicit summation formula.
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Theorem 17. The risk polynomial R(G; f) equals the sum of the products
f(π) where π runs over all linear extensions of the event poset E.

Proof. The relationship between chains in G and linear extensions of E is
the content of [27, Prop. 3.5.2]. The distributive lattice G has a canonical
R-labeling [27, Sec. 3.13] which assigns to each edge of the Hasse diagram of
G the corresponding element of E . In view of this R-labeling, Exercise 59d
in [27, Chap. 3] tells us that the poset G′ = G\{0̂, 1̂} is chain-partitionable.
Each product f(π) as in (13) is the generating function for all the chains in
precisely one part of that chain partition of G′. Adding up all products gives
the generating function for all chains, which is the risk polynomial. �

Example 18. The event poset E in Figure 1 has five linear extensions π:

π f(π)

(1, 2, 3, 4) (1 + f1000)(1 + f1100)(1 + f1110)

(1, 2, 4, 3) (1 + f1000)(1 + f1100)f1101

(2, 1, 3, 4) f0100(1 + f1100)(1 + f1110)

(2, 1, 4, 3) f0100(1 + f1100)f1101

(2, 4, 1, 3) (1 + f0100)f0101(1 + f1101)

The sum of these five products equals the risk polynomial R(G; f).

Pruesse and Ruskey [22] showed that the linear extensions of a poset E
can be computed in time linear in the number of linear extensions. Thus,
their algorithm computes R(G; f) in time linear in the size of the output of
Theorem 17. That output is in factored form (13) and is always more com-
pact than the expanded risk polynomial. In this manner, we compute the
risk polynomial in time sublinear in the size of the expanded risk polynomial.

To obtain the univariate risk polynomial, we take the sum of the terms
(1 + a)n−1−δaδ, where δ = δ(π) is the number of descents of the linear
extension π. Similarly, the graded risk polynomial R(G; a1, . . . , an−1) is
found by keeping track of the descent set of each linear extension π. We
believe that this method is best possible for general posets E . Notice that
the leading term of the univariate risk polynomial is the number of linear
extensions of E , and it is #P-complete to count linear extensions [8].

When E is a directed forest, the recursive structure can be used to help
compute the risk polynomial. In this case, E is built up by the operations
of disjoint union and ordinal sum from the one element poset. For exam-
ple, in the univariate case, the zeta polynomial [27, Sec. 3.11] of G behaves
nicely under these operations and can be used to write down the risk poly-
nomial. Based on these considerations, we can design an efficient algorithm
for computing the univariate risk polynomial of a directed forest.

Using the method of Theorem 17, we have developed software for com-
puting risk polynomials. The input to our program is an arbitrary event
poset E , and the output is the risk polynomial, the graded risk polynomial
or the univariate risk polynomial. Optionally, the user can also input either
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exact fitness values or upper and lower bounds for each fitness value. The
output in this case is either the exact risk of escape or upper and lower
bounds for the risk. It is designed to integrate with the package Mtreemix

[5], allowing the user to start with data, infer a mutagenetic tree, and then
easily compute the risk polynomial. Our software is available at

http://math.berkeley.edu/~eriksson/software.html

We use the algorithm of [29] for computing linear extensions. Although
this algorithm isn’t asymptotically optimal, as shown in [22], it is simple to
implement and efficient in practice.

For an example of our ability to compute risk polynomials, let E be the
poset on n = 12 events with cover relations i < 6 + i for 1 ≤ i ≤ 6 and
i < 7+ i for 1 ≤ i ≤ 5. Here the genotype lattice G consists of 375 genotypes
and the event poset E has 2,702,765 linear extensions. The risk polynomial
takes 11 seconds to compute and takes up 200MB of disk space. In expanded
form, it would have 224,750,298 terms in the 4096 unknowns. The univariate
risk polynomial for this example is

1 + 375a + 19088a2 + 324498a3 + 2610169a4 + 11729394a5 + 32080336a6+

55597909a7 + 61448965a8 + 42020208a9 + 16216590a10 + 2702765a11 .

Such examples suggest that exact symbolic computations, as opposed to nu-
merical approximations, may be feasible when one is interested in assessing
the risk of viral escape in applications like the one described in Section 5.

7. Discussion

We have presented methods for computing the risk polynomial of a fitness
landscape. For accumulative evolutionary processes, the underlying space G
of genotypes may be inferred using statistical model selection tools. The rel-
evant statistical models are the conjunctive Bayesian networks. Order con-
straints on the mutation events, expressed in a poset E , endow the genotype
space G with the structure of a distributive lattice. This structure allows for
the design of efficient computational tools within the well-developed frame-
work of algebraic combinatorics. Mutagenetic tree models arise as important
special cases. Here, both statistical model selection and risk computation are
particularly efficient, and readily available with existing software [5] coupled
with our implementation of Theorem 17.

The risk polynomial is a crucial factor in assessing the risk of escape from
strong selective pressure experienced by a population evolving according to a
multitype branching process. We have considered a homogeneous wild type
population prior to intervention, but the risk of escape is calculated similarly
for a quasispecies distribution at the time of intervention. In fact, this
involves computing the risk polynomial of the prior fitness landscape [14].
In contrast, the branching process model can not account for recombination,

http://math.berkeley.edu/~eriksson/software.html
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horizontal gene transfer, or frequency dependent selection, since evolution
is assumed to take place in multiple lineages independently.

The main challenge in using our method to compute the risk of escape
from antiretroviral therapy lies in accurately modeling the fitness landscape.
The dependency (12) of the fitness on drug concentration may be improved
by experimentally determined viral replicative capacities in the absence of
drugs. An alternative approach to derive a fitness landscape for HIV-1 pro-
teases is based on estimating the binding affinity of the drug to the mutant
protease, and the mutant’s ability to cleave its natural substrates [25]. These
calculations are based on simplified molecular modeling techniques. The re-
sulting fitness landscape does not account for different drug levels, but it is
independent of experimental resistance and fitness data.

Escape from indinavir and ritonavir therapy may in some cases involve
mutations other than the seven we considered, although those are the most
frequent mutations observed after therapy failure [10, 19]. On the other
hand, viral escape might be accomplished with genotypes that harbor fewer
than all of the mutations. Thus it would be desirable to compute the risk of
reaching any of several escape states, rather than only the 11 · · · 1 type. This
computation will involve similar techniques to those presented in Section 6.

Finally, the PIs form only one out of four distinct classes of antiretroviral
drugs that are in current clinical use. The standard of care is combination
therapy with at least three different drugs from two different drug classes.
Modeling the fitness landscape of combination therapy in terms of viral drug
resistance and drug exposure is even more challenging, but can eventually
help in designing optimal antiretroviral therapies. Algebraic combinatorics
offers tools for the mathematical analysis of these biomedical problems.
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