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Abstract

Conjunctive Bayesian networks (CBNs) are graphical models that
describe the accumulation of events which are constrained in the order
of their occurrence. A CBN is given by a partial order on a (finite) set
of events. CBNs generalize the oncogenetic tree models of Desper et al.
(1999) by allowing the occurrence of an event to depend on more than
one predecessor event. The present paper studies the statistical and
algebraic properties of CBNs. We determine the maximum likelihood
parameters and present a combinatorial solution to the model selection
problem. Our method performs well on two datasets where the events
are HIV mutations associated with drug resistance. Concluding with
a study of the algebraic properties of CBNs, we show that CBNs are
toric varieties after a coordinate transformation and that their ideals
possess a quadratic Gröbner basis.

Keywords: Bayesian network, distributive lattice, Gröbner basis,
maximum likelihood estimation, Möbius transform, mutagenetic tree,
oncogenetic tree, sagbi basis, toric variety.
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1 Introduction

The conjunctive Bayesian network (CBN) model on a finite partially ordered
set (poset) was introduced in Beerenwinkel et al. (2006, §4) as well as in the
form of noisy-and models in the AI literature (e.g., Pearl, 1986). Here, we
give a self-contained study of the statistical and algebraic properties of this
model. CBNs are specializations of Bayesian networks. They include the
oncogenetic (also called mutagenetic) tree models of Desper et al. (1999)
which have proven very useful in cancer research (Radmacher et al., 2001)
and in the study of HIV drug resistance (Beerenwinkel et al., 2005a).

The models are motivated by the following class of problems. Consider
a finite set of genetic events, for example, DNA mutations or chromosomal
alterations, and assume that the genetic changes are permanent. In this
situation, each individual, defined by its genotype, is completely character-
ized by the subset of the events that have occurred. We wish to learn the
constraints on the orders in which these events have accumulated. A CBN is
a probabilistic model of this process derived from a partial order on the set
of events. This partial order encapsulates the dependencies between events.

For example, consider the development of drug resistance in HIV. This
evolutionary process is characterized by the accumulation of resistance mu-
tations in the viral genome. Under fixed drug pressure these mutations are
virtually non-reversible, because they confer a strong selective advantage.
Thus, the genetic events are fixations of specific amino acid substitutions in
the virus population. In each patient, different combinations of resistance
mutations will occur. We seek to determine the prevalent mutational path-
ways along which HIV accumulates drug resistance (cf. Beerenwinkel et al.,
2005b). An order constraint might read that mutations at position 20 and
82 of the target protein must occur before we can see a mutation at position
54. This constraint appears in Figure 4(a). We will analyze such data in
Section 4 and see that CBNs are an efficient, accurate tool for this problem.

For another example, the development of cancer is associated with large-
scale genetic events such as the gains or losses of parts of chromosomes
(Michor et al., 2004). Knowledge of the constraints on the accumulation
of these genetic events helps in assessing the progression of the cancer and
assigning treatments (cf. Rahnenführer et al., 2005).

A CBN consists of a set of binary random variables, called events, and a
partial order on these events. While we will use the language of the theory
of posets, readers can equivalently think of the partial order as a directed
acyclic graph (DAG), with edges encoding the order relations. CBNs are spe-
cializations of Bayesian networks, with the difference being that in a CBN,
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an event cannot occur until all of its parents have occurred. Thus the events
that occur with positive probability form a distributive lattice. Distribu-
tive lattices are important combinatorial objects which have been studied in
statistics. For example, the LCI models of (Andersson and Perlman, 1993;
Andersson et al., 1995) use distributive lattices to encode conditional inde-
pendence statements. Although similar in spirit, readers should beware that
LCI models are not the same as CBNs.

Our original motivation for studying CBNs came from work on mutage-
netic trees, introduced in Desper et al. (1999). Mutagenetic trees assume
that each event depends on the occurrence of at most one other previous
event. CBNs relax this assumption, allowing for an arbitrary partial order
on the events. By relaxing this assumption, CBNs are able to model a larger
range of biomedical problems effectively.

Even though they generalize currently used models, CBNs are still very
restrictive compared to Bayesian networks in general. However, CBNs have
the benefit that the maximum likelihood parameters and structure can be
written down in closed form (Proposition 2 and Theorem 5). This is an
uncommon phenomenon in the theory of graphical models, and should be of
independent interest. In addition, the number of parameters in a CBN does
not depend on the graph structure, so we do not need to use, for example,
the AIC or BIC procedures.

CBNs have also been studied under the name of noisy-and models in the
AI community (Meek and Heckerman, 1997; Pearl, 1986, 1988) as a model
for causal inference. The basic idea is that a number of causes influence a
common effect through latent intermediate variables; the noisy-and model
requires all causes to have happened before the effect can. The study of these
models focusses on learning the causal structure given latent variables, in
contrast to our situation where we wish to learn the structure of a network
on observed variables.

In this paper, we show that CBNs have desirable algebraic, statistical,
and combinatorial properties. CBN models can be learned efficiently, they
can be extended to take into account noise in the data, and they perform
better than mutagenetic trees in our applications (cf. Figure 3). This paper
is organized as follows. After formally introducing CBNs in Section 2, we
compute the maximum likelihood (ML) estimator for a CBN in Section 3 and
use this to give a combinatorial characterization of the CBN model of max-
imal likelihood. Next, in Section 4, we compare the performance of CBNs
to mutagenetic trees on two data sets of HIV drug resistance mutations. Fi-
nally, in Section 5, we study algebraic properties of CBNs. These properties
are surprisingly similar to other algebraic results for statistical models. This

3



material may ultimately become relevant for statistical inference, but may
also be of independent interest to mathematicians. We determine the prime
ideal of algebraic invariants of a CBN and we show that this model is a toric
variety in a suitable coordinate system. Our main tool is the Möbius trans-
form, a standard tool in working with posets which has found application
in the graphical models literature, cf. Drton and Richardson (2005, §3) and
Lauritzen (1996, pg. 239).

2 Conjunctive Bayesian networks

A CBN model is specified by a set E of events, a partial order “≤” on the
events, and parameters θe for each event e. We will assume that there are
n events, labeled as [n] := {1, . . . , n}. Therefore we write the parameters
as θ = (θ1, . . . , θn). Frequently, we will abuse notation and refer to both
the model (E ,≤, θ) and the poset (E ,≤) as E when the meaning is clear
from context. A relation e1 < e2 between two events in E is interpreted as
requiring that event e1 must happen before event e2 can. The parameter θe

is the conditional probability that the event e ∈ E has occurred given that
its predecessor events have already occurred.

The state space of the CBN model is the distributive lattice G = J(E)
of order ideals in E . An order ideal is a subset g ⊆ E such that if e2 ∈ g and
e1 < e2, then e1 ∈ g. Readers unfamiliar with posets and their distributive
lattices are referred to Beerenwinkel et al. (2006, §2) for a brief introduction.
The elements of G are called genotypes. Thus, a genotype g ∈ G is a subset of
E , or equivalently the binary string in which each bit indicates the occurrence
of an event. This terminology presumes a well-defined ground state 0 . . . 0 in
which none of the events have yet occurred. In our examples, the unmutated
virus strain or the unmutated potential cancer cell is referred to as the “wild
type”. Hence, for describing mutant types, we only have to keep track of
which sites differ from the wild type because of the assumption of non-
reversibility of events.

We write min(gc) for the minimal elements in the complement gc =
E\{g} of a genotype g. The elements of min(gc) are the events that have
not occurred in g but could happen next. For example, in Figure 1, if
g = {1, 2} then min(gc) = {3, 4}. The probability of observing the genotype
g ∈ G in the CBN model on the poset E is defined to be

Pg(θ) =
∏
e∈g

θe ·
∏

e∈min(gc)

(1− θe).
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Figure 1: Poset on four events, order ideals, and genotype lattice.

That is, the probability of observing g is the probability that all the events in
g have happened times the probability that none of the events that depend
only on g have happened.

Equivalently, the CBN model on E is the directed graphical model for
the binary random variables (Xe)e∈E whose graph has edges e → f for all
cover relations e < f in E , and whose conditional probability tables are

[
Pr(Xe = b | Xpa(e) = a)

]
a∈{0,1}pa(e), b∈{0,1} =


1 0
...

...
1 0

1− θe θe

 ,

where pa(e) denotes the parents of e in the acyclic directed graph E .

Example 1. Let n = 4 and suppose E is the poset defined on four events
by the cover relations 1 < 3, 1 < 4, 2 < 3 and 2 < 4. The poset E has
precisely seven order ideals, so the distributive lattice G consists of seven
genotypes. They are displayed in Figure 1. The CBN model E is the family
of probability distributions on G which is given parametrically as follows:

P∅(θ) = (1− θ1)(1− θ2), P1(θ) = θ1(1− θ2),
P2(θ) = θ2(1− θ1), P12(θ) = θ1θ2(1− θ3)(1− θ4),

P1234(θ) = θ1θ2θ3θ4, P123(θ) = θ1θ2θ3(1− θ4),
P124(θ) = θ1θ2θ4(1− θ3).

The sum of these seven polynomials is identical to one. The parameters are
the conditional probabilities θe = Pr(Xe = 1 | Xpa(e) = (1, . . . , 1)).
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3 Maximum likelihood estimation

Consider any CBN model E on [n]. The data for this model takes the form
of a function u : G → N, g 7→ ug, where ug is the number of observations of
the genotype g. Given such data u ∈ NG , the following proposition gives an
easy formula for maximum likelihood estimation of the model parameters.

Proposition 2. For each event e in the CBN model E, the ML estimator θ̂e

of θe equals the relative frequency of the genotypes which contain e among
all genotypes that contain the events which are strictly below e. In symbols,

θ̂e =

∑
g:e∈g ug∑

g:below(e)⊆g ug
for all e ∈ E .

Proof. The log-likelihood function for the given data u ∈ NG equals

`u(θ) =
∑
g∈G

ug ·

∑
e∈g

log θe +
∑

e∈min(gc)

log(1− θe)

 .

The partial derivative of this expression with respect to a parameter θe is

∂`u

∂θe
=

A

θe
− B

1− θe
,

where A is the sum over all frequencies ug of genotypes g containing e, and
B is the sum over all frequencies ug where e 6∈ g but below(e) ⊆ g. Equating
this partial derivative with zero, we obtain

θ̂e =
A

A + B
,

and this is precisely the formula asserted in the proposition.

Example 3. We illustrate Proposition 2 for the model in Example 1 and
Figure 1. Since below(1) = ∅, the ML estimator for θ1 is

θ̂1 =
u1 + u12 + u123 + u124 + u1234

u + u1 + u2 + u12 + u123 + u124 + u1234
,

and similarly for θ2. For θ3, below(3) = {1, 2}, and hence

θ̂3 =
u123 + u1234

u12 + u123 + u124 + u1234
.

The expression for the ML estimator of θ4 is similar.
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Remark 4. Proposition 2 shows that the ML estimator for the CBN model
is a rational function in the data. In the language of Catanese et al. (2006),
this says that the ML degree of every CBN model is equal to one.

We identify the elements of G with strings in {0, 1}n. A probability dis-
tribution on G is thus an element of the (2n−1)-dimensional simplex ∆ with
coordinates indexed by {0, 1}n. Write supp(u) for the nonzero coordinates
of u, i.e., for the genotypes that occur in the data set. We say that u sepa-
rates the events if, for any two elements e, f ∈ [n], there exists g ∈ supp(u)
such that g ∩{e, f} is either {e} or {f}. If this is not the case, then we can
consider {e, f} as a single event and replace [n] by [n− 1].

We call any genotype g ⊆ [n] compatible with the model E if g ∈ J(E) =
G. This is equivalent to Pg(θ) not being the zero polynomial; see also Beeren-
winkel and Drton (2005, Definition 14.2). The data u is said to be compatible
with E if all g ∈ supp(u) are compatible with E . Our next theorem is the
main result of this section. It gives a combinatorial solution to the problem
of model selection among CBNs. Here, any given data set u : {0, 1}n → N
is identified with the corresponding empirical probability distribution in ∆.
For such u ∈ ∆, we can compute the ML estimator θ̂ for each poset E on
[n]. We define the ML CBN model for u to be the poset E for which the
log-likelihood `u(θ̂) has the largest numerical value.

Theorem 5. Let u ∈ ∆ be a probability distribution which separates the
events. Then there is a unique largest poset Eu, such that u is compatible
with Eu, and the poset Eu is the unique ML CBN model for u.

Here, “largest poset” refers to the refinement relation among posets on
[n], i.e., E ⊂ E ′ means that every relation e < f in E also holds in E ′. Note
that this inclusion is reversed for the induced genotype lattices: E ⊂ E ′ if
and only if G = J(E) ⊃ G′ = J(E ′).

Proof. The probability Pg(θ) is identically zero if and only if g is not in
G = J(E). This implies that the likelihood function

∏
g∈supp(u) Pg(θ)ug is

identically zero if and only if u is not compatible with the poset E . Therefore,
we need to consider only posets E such that u is compatible with E .

We claim that there is a unique maximal poset Eu to which u is compati-
ble. Namely, Eu is the set of all relations e1 < e2 such that g∩{e1, e2} 6= {e2}
for all g ∈ supp(u). Then Eu is an antisymmetric relation on [n] because u
separates the events. The relation Eu is transitive because g∩{e1, e3} = {e3}
implies g ∩ {e1, e2} = {e2} or g ∩ {e2, e3} = {e3}. Thus Eu is a poset, and
adding any relation makes u incompatible with it.
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It remains to show the following statement: If E1 ⊂ E2 ⊆ Eu, then E2 is
more likely than E1. It suffices to show this where E1 and E2 differ by only
one relation, which without loss of generality we assume to be 1 < 2. Thus
the events 1 and 2 are incomparable in E1 but 1 must come before 2 in E2.

Let G1 = J(E1) and G2 = J(E2). We begin by finding the ML parameters
for the two models. Write θ̂e for the ML parameters for G1 and η̂e for the
ML parameters for G2. According to Proposition 2, we have

θ̂e =

∑
g∈G1:e∈g ug∑

g∈G1:below(e)⊆g ug
and η̂e =

∑
g∈G2:e∈g ug∑

g∈G2:below(e)⊆g ug
.

Since G1 ⊃ G2 ⊇ supp(u), the numerators of both expressions are the same,
namely, we are summing the counts ug over all genotypes g that contain e.

We claim that θ̂e = η̂e except when e = 2. In both cases, the denomina-
tor is the sum over ug for all genotypes g where e has either already occurred
or is allowed to occur next. Since E1 and E2 differ in only one relation, 1 < 2,
the denominators are the same (and hence θ̂e = η̂e) unless e = 2.

In order to further analyze the ML estimates, we set

V1 =
∑
g:1∈g

ug, V2 =
∑
g:2∈g

ug,

N =
∑

g∈G1:below(2)⊆g

ug, M =
∑

g∈G2:below(2)⊆g

ug.

With this notation, the maximum likelihood parameters are

θ̂2 =
V2

N
, η̂2 =

V2

M
.

Notice that since event 1 always happens in the data before event 2,
we have V2 ≤ V1. Since E2 has more conditions that E1, we have M ≤ N .
And since event 1 is required to happen before event 2 can in E2, we have
V1 ≤ M . Combining these inequalities gives us V2 ≤ V1 ≤ M ≤ N .

Our analysis will involve the ratios of the ML parameters

θ̂2

η̂2
=

M

N
,

1− θ̂2

1− η̂2
=

M

N

N − V2

M − V2
. (1)

For i = 1, 2, the likelihood function for the given distribution u equals

Lu(θ;Gi) =
∏
g

(∏
e∈g

θ
ug
e

)
·

 ∏
e∈min(gc)

(1− θe)ug

 .
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Substitute θe = θ̂e for i = 1 and θe = η̂e for i = 2. Our assertion states that

Lu(θ̂;G1) ≤ Lu(η̂;G2).

To prove this, we consider the ratio Lu(θ̂;G1)/Lu(η̂;G2), written as a product
over g ∈ supp(u), and we examine the four possibilities for g ∩ {1, 2}:

Case 1: g = 00∗. Here event 2 can happen in E1, but it can’t yet in E2,
since it needs event 1 to happen first. This contributes a factor (1− θ̂2)ug to
the product over g in Lu(θ̂;G1)/Lu(η̂;G2). Since event 2 has not happened
yet, there are no factors θ̂2/η̂2 in this product, so everything else cancels.

Case 2: g = 01∗. This case cannot happen by compatibility.
Case 3: g = 10∗. Event 2 has not happened in either case, so all the

terms in the product over e ∈ g cancel. The same set of events can happen in
both G1 and G2, so everything in the product over e ∈ min(gc) cancels except
the factor with e = 2, which occurs both in Lu(θ̂;G1) and in Lu(η̂;G2).

Case 4: g = 11∗. This case is similar to case 3, except that event 2 has
now happened in both cases.

The result of this analysis is the identity

Lu(θ̂;G1)
Lu(η̂;G2)

=
∏

g=00∗
(1− θ̂2)ug

∏
g=10∗

(
1− θ̂2

1− η̂2

)ug ∏
g=11∗

(
θ̂2

η̂2

)ug

. (2)

Notice that ∑
g=10∗

ug +
∑

g=11∗
ug = V1 and

∑
g=11∗

ug = V2.

Therefore,
∑

g=00∗ ug = 1− V1. Substituting (1) into (2), we get

Lu(θ̂;G1)
Lu(η̂;G2)

=
(

N − V2

N

)1−V1
(

M(N − V2)
N(M − V2)

)V1−V2
(

M

N

)V2

(3)

=
MV1

N

(N − V2)1−V2

(M − V2)V1−V2
.

The following lemma shows that (3) is less than or equal to one for all
0 ≤ V2 ≤ V1 ≤ M ≤ N ≤ 1. This completes the proof of Theorem 5.

Lemma 6. If x, y, a, b are real numbers with 0 ≤ a ≤ b ≤ x ≤ y ≤ 1 then

xb

y

(y − a)1−a

(x− a)b−a
≤ 1 (4)
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Proof. We fix a and b and regard the left hand side of (4) as a function
fa,b(x, y) of x and y. The two partial derivatives of this function satisfy

∂fa,b

∂x
=

a(x− b)
x(x− a)

· fa,b(x, y) and
∂fa,b

∂y
=

a(1− y)
y(y − a)

· fa,b(x, y).

Both expressions are positive on the triangle {(x, y) ∈ R2 : max(a, b) ≤ x ≤
y ≤ 1}, hence fa,b(x, y) is bounded above by fa,b(1, 1) = (1−a)1−b ≤ 1.

We summarize the results of this section in the following algorithm.

Algorithm 7. (Model selection and parameter estimation for CBN models)
Input: A probability distribution u ∈ ∆ on the set of genotypes {0, 1}n.
Output: The ML CBN model Eu and the ML parameters θ̂.
Step 1: Check whether u separates the n events. If not, group non-
distinguished events together, thus decrementing n, and replace u by the
probability distribution which is induced on the smaller set of genotypes.
Step 2: Define the poset Eu on [n] as follows: For any two events e, f ∈ [n]
we set e < f in Eu if and only if g ∩ {e, f} 6= {f} for all g ∈ supp(u).
Step 3: For each event e ∈ [n], compute θ̂e by the formula in Proposition 2.
Step 4: Output the poset Eu and the vector θ̂ ∈ [0, 1]n.

4 Application to HIV genetic data

The use of Algorithm 7 to obtain the ML CBN model is complicated by the
presence of noise in real world data sets. Any relation e < f between two
events e and f will be estimated to be part of the poset E only if no genotype
containing f but not e has been observed. Thus, the algorithm will miss
relations e < f that have strong but imperfect support. The problem of
noisy data has been analyzed in earlier work on mutagenetic tree models. It
can be addressed by explicit error models in a ML framework as described in
Beerenwinkel and Drton (2005, §14.2) and Beerenwinkel and Drton (2007,
§3.3). Also, Szabo and Boucher (2002) have incorporated an error model
directly into the reconstruction algorithm of Desper et al. (1999).

We propose the following method for constructing a range of CBN models
as the error tolerance ε varies. Let Eε be the poset on [n] which consists of
all relations e < f which are violated by at most a fraction ε of the data.
Thus, for ε = 0, we recover Eu. Generally, some observations g ∈ supp(u)
will be incompatible with the model Eε. These samples are removed prior
to ML estimation of the model parameters θ. In order to account for both
the compatible and incompatible data, we use a simple mixture model.
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Write Gε = J(Eε) for the genotype space of the model Eε. We assume that
the incompatible genotypes g 6∈ Gε are generated with uniform probability
1/(2n − |Gε|). Our mixture model E ′ε is given parametrically by the event
probabilities θe and a mixture parameter λ as

P ′
g(θ, λ) =

{
λ Pg(θ) if g ∈ Gε

(1− λ) (2n − |Gε|)−1 if g 6∈ Gε,

for each observation g ∈ {0, 1}n. This expression gives an explicit trade-off
between a large number of compatible samples and a good model fit.

Since the mixing distributions of the model E ′ε have disjoint support, the
log-likelihood function of the data u : {0, 1}n → N decomposes as follows:

`′u(θ, λ) =
∑
g∈Gε

ug [log λ + log Pg(θ)]

+
∑
g 6∈Gε

ug [log(1− λ)− log(2n − |Gε|)] . (5)

Proposition 8. The ML estimators θ̂e of θe under the model E ′ε are given
by Proposition 2. The ML estimator λ̂ of λ under the model E ′ε is given by
the fraction of the data u which is compatible with the model Eε. That is,

λ̂ =

∑
g∈Gε

ug∑
g ug

.

Proof. The partial derivatives of (5) with respect to θe are the same as they
were in Proposition 2. Next, if we solve

0 =
∂`′

∂λ
=

∑
g∈Gε

ug

λ
−
∑
g 6∈Gε

ug

1− λ
,

we get the above formula for λ̂.

We now apply these methods to mutation data from HIV that was ob-
tained from patients under antiretroviral therapy. The set E of genetic events
consists of seven amino acid alterations in the HIV genome that confer drug
resistance. Specifically, as an unordered set,

E = {K20R, M36I, M46I, I54V, A71V, V82A, I84V},

where, for example, K20R indicates the amino acid mutation from lysine (K)
to arginine (R) at position 20 of the HIV protease. We consider two datasets

11



M36I

K20R

OO

I84V A71V

OO

M46I

OO

I54V

OO

V82A

__????
??����

K20R I54V A71V I84V

M36I

OO

V82A

__????
??����

M46I

OO

(a) RTV (b) IDV

Figure 2: Posets corresponding to the mutagenetic trees that were found in
Beerenwinkel et al. (2006, Figure 3) for (a) ritonavir (RTV) and (b) indinavir
(IDV).

from the Stanford HIV Drug Resistance Database (Rhee et al., 2003), which
consist of 112 and 691 observed genotypes under therapy with the protease
inhibitors ritonavir (RTV) and indinavir (IDV) respectively.

Previous studies identified correlations and preferred pathways among
the resistance mutations (Condra et al., 1996; Molla et al., 1996). In par-
ticular, in Beerenwinkel et al. (2006) we used mutagenetic trees to infer the
underlying dependency structure. The posets are displayed in Figure 2.

For each dataset, we built posets Eε for various values of ε. For each
estimated poset, we report two numbers: the log-likelihood of the data
given the mixture model E ′ε and the mixture parameter λ̂ (i.e., the fraction
of the data which was explained by the model Eε). We also calculated these
numbers for the mutagenetic trees (Figure 2). These results are shown in
Figure 3. Software for building the posets Eε and computing the likelihood
is available at http://bio.math.berkeley.edu/CBN/.

The two posets that maximize `′u for RTV and IDV, respectively, are dis-
played in Figure 4. Notice that almost all CBNs Eε constructed performed
better than the mutagenetic trees. In order to estimate the significance
of this difference, we repeated the log-likelihood calculation for each poset
using 1000 bootstrap samples from the original data. The difference in log-
likelihood between these optimal posets and the mutagenetic tree induced
posets is large enough that their distributions derived from the bootstrap
analysis never overlapped. Thus the difference between the optimal CBN
models and the mutagenetic trees is found to be highly significant.
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Figure 3: Log-likelihood `′u for the CBN models Eε (filled circles) for various
choices of the error tolerance ε as a function of the fraction of incompatible
genotypes g 6∈ Gε. The filled squares correspond to the trees shown in
Figure 2. Quartile bars have been derived from 1000 bootstrap samples.
Subfigures correspond to (a) ritonavir (RTV) and (b) indinavir (IDV).
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Figure 4: Conjunctive Bayesian networks for (a) ritonavir (RTV) and (b)
indinavir (IDV) that maximize the likelihood `′u. The posets represent the
models corresponding to the maxima of the graphs shown in Figure 3.

Comparing the optimal CBNs (Figure 4) to the mutagenetic trees (Fig-
ure 2) suggests that the mutagenetic trees may induce too many relations
and may be handicapped by the requirement that the output is a tree. The
posets for RTV share two relations (V82A < M46I and V82A < I54V),
while those for IDV share none. The RTV poset (Figure 4a) includes the
conjunction that both mutations K20R and V82A must occur before I54V,
which can not be represented in a mutagenetic tree. By contrast, the IDV
poset (Figure 4b) could be represented by a mutagenetic tree, but this tree
has not been found by the tree building procedure of Desper et al. (1999).
Although the posets and trees do not share many relations, they display a
similar structure in that the development of ritonavir resistance is a much
more ordered process than for indinavir (see also Beerenwinkel et al., 2006).

This comparison suggests several advantages of CBNs. First, they pro-
vide better model fits than the posets derived from the mutagenetic tree
models. Second, they rely on a ML method both for parameter estimation
and for model selection. This stands in contrast to the algorithm of Desper
et al. (1999), which is not an ML procedure. Finally, the perturbed CBNs
Eε can cover a wide range of fractions of unexplained samples, providing a
“parametric” picture of the relations present in the data.

5 Algebraic study of the CBN model

In this final section we study CBNs from the perspective of algebraic statis-
tics. Following Pachter and Sturmfels (2005), we regard a CBN as an alge-
braic variety in a space of dimension |G|. The objective is to compute the
prime ideal of all polynomials which vanish on this variety. These polyno-
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mials are the algebraic invariants of the CBN model.

Example 9. For the model with four events and seven genotypes in Exam-
ple 1, the algebraic invariants are generated by the three polynomials

p123 · p124 − p12 · p1234, p1 · p2 − p∅ · p12 − p∅ · p123 − p∅ · p124 − p∅ · p1234,

and p∅ + p1 + p2 + p12 + p123 + p124 + p1234 − 1.

Indeed, these three expressions vanish identically if we replace pg by Pg(θ),
for each genotype g. Here “are generated” means that every other polyno-
mial with this property is a linear combination of the three polynomials.

The main theorem in this section exhibits an explicit Gröbner basis for
the algebraic invariants of any CBN model. This Gröbner basis consists of a
set of quadratic polynomials together with the trivial invariant

∑
g∈G pg−1,

just like in Example 9. For the special case where E is a forest, this result
was proven in Beerenwinkel and Drton (2005, Theorem 14.11). Other widely
used statistical models have Gröbner bases of the same form, for example,
decomposable Markov random fields (Geiger et al., 2006) and Jukes-Cantor
models in phylogenetics (Sturmfels and Sullivant, 2005). Among Markov
random fields, having a Gröbner basis of quadrics is equivalent to having
ML degree one (Geiger et al., 2006, Theorem 4.4). This suggests a possible
relationship between Theorem 5 and Theorem 10 below. The analogy to
Jukes-Cantor models is noteworthy. These models become toric varieties
after a linear change of coordinates, known as the Fourier transform or
Hadamard conjugation. The same property will be shown in Corollary 11
for the CBN models, but now the role of the Fourier transform is played by
Möbius inversion on the distributive lattice G.

To state our algebraic results, we regard the probabilities pg, for each
genotype g in G = J(E), as unknowns. These generate the polynomial ring

R[G] = R[ pg : g ∈ G ].

In this ring, we consider the prime ideal IE consisting of all polynomials that
vanish on the family of probability distributions defined by the CBN model
E . Equivalently, IE is the kernel of the ring map R[G] → R[E ], pg 7→ Pg(θ),
where R[E ] is the polynomial ring generated by the parameters θe, e ∈ E .

We fix a linear extension of the reverse inclusion order on G, where g = ∅
is the largest element and g = E is the smallest element. We define ≺ to be
the degree reverse lexicographic monomial ordering on R[G] induced by the
variable ordering given by the fixed linear extension.
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Theorem 10. The reduced Gröbner basis of the ideal IE with respect to the
monomial ordering ≺ consists of the trivial linear invariant

∑
g∈G pg − 1,

with leading term p∅, together with one homogeneous quadratic polynomial

pg · ph − pg∪h · pg∩h + ≺-lower terms (6)

for each incomparable pair of genotypes {g, h} in the distributive lattice G.

Proof. We start our proof of Theorem 10 by recalling that the sum of the
polynomials Pg(θ) equals one. If we take the subsum of all polynomials Pg(θ)
where g runs over all genotypes containing some fixed genotype h ∈ G then
this is essentially the same sum with E replaced by E\h, and we conclude:∑

g:h⊆g

Pg(θ) =
∏
e∈h

θe.

This expression represents the probability that each event in h has hap-
pened. The identity suggests that we perform the following linear change of
coordinates in the polynomial ring R[G]:

qh :=
∑

g:h⊆g

pg (for all h ∈ G). (7)

Thus, in the new coordinates qh, the CBN model is precisely the toric variety
associated with the distributive lattice G. A well-known theorem of Hibi
(1987) states that the ideal of this toric variety is generated by the binomials

qg · qh − qg∪h · qg∩h, (8)

where {g, h} runs over all incomparable pairs of elements of G. Moreover,
these binomials form a Gröbner basis with the underlined terms as the lead-
ing terms. Thus IE is generated by the quadrics (8) together with the
relation q∅ − 1, which is obtained from (7) under the assumption that the
probabilities pg sum to one. Now, if we rewrite (8) in terms of the original
coordinates pg then we get quadrics of the form (6).

We claim that the quadrics (8) in the original coordinates pg form a
Gröbner basis for IE . This Gröbner basis will be minimal but not reduced.
We shall verify the Gröbner basis property by using the theory of sagbi bases
(or canonical bases), as described by Sturmfels (1996, §11).

Let < denote a negative degree monomial ordering on the polynomial
ring of parameters, R[E ] = R[θe : e ∈ E ]. Thus < is a local monomial
ordering in which 1 = θ0 is the largest monomial, and monomials of higher
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total degree are <-smaller than monomials of lower total degree. See Greuel
and Pfister (2002) for an introduction to local monomial orderings.

We shall prove that the coordinate polynomials Pg(θ) of the CBN model
form a sagbi basis for the local ordering <, i.e., the <-leading monomials

in<(Pg(θ)) =
∏
e∈g

θe (9)

generate the algebra of all <-leading monomials of polynomials in the image
of our ring map R[G] → R[E ], pg 7→ Pg(θ). Let JE be the prime ideal in
R[G] consisting of all algebraic relations on the initial monomials (9). By
Hibi’s result, JE is generated by the binomials pg · ph − pg∪h · pg∩h, and
these binomials form the reduced Gröbner basis of JE with respect to ≺.

Let w ∈ RE be a weight vector which represents the local ordering <
for the coordinate polynomials Pg(θ), and let AT w be the induced weight
vector in RG . By Sturmfels (1996, Lemma 11.2) we have

inAT w(IE) ⊆ JE . (10)

Importantly, pg · ph − pg∪h · pg∩h is the initial form of (8) with respect to
AT w, so the reverse inclusion holds as well. Thus, equality holds in (10), and
the desired sagbi basis property holds by Sturmfels (1996, Theorem 11.4).

By Sturmfels (1996, Corollary 11.6(a)) we conclude that the quadratic
model invariants (8) form a Gröbner basis of IE with respect to ≺. This
Gröbner basis is minimal and it can be transformed into the reduced Gröbner
basis by autoreduction. This completes the proof of Theorem 10.

A few remarks are in order. The linear transformation between the p-
coordinates and the q-coordinates on the polynomial ring R[G], given in (7),
is precisely the Möbius inversion on the genotype lattice G. Equivalently,
the coefficients (+1, −1, or 0) in the monomials in the expanded model
coordinates Pg(θ) are precisely the values of the Möbius function on G.

Example 9 illustrates Theorem 10 for the model in Example 1. The three
model invariants form a Gröbner basis with leading terms p123 · p124, p1 · p2,
and p∅. Möbius inversion on the genotype lattice pictured in Figure 1 gives

p∅ = q∅ − q1 − q2 + q12, p1 = q1 − q12, p2 = q2 − q12,

p12 = q12 − q123 − q124 + q1234, p1234 = q1234,

p123 = q123 − q1234, p124 = q124 − q1234.

If we perform these substitutions in the reduced Gröbner basis listed in
Example 9, then the three given model invariants simplify to

q∅ − 1, q1 · q2 − q∅ · q12, q123 · q124 − q1234 · q12.
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Corollary 11. The Möbius inversion (7) on the distributive lattice G =
J(E) is a linear change of coordinates which identifies the CBN model E
with the toric variety of the distributive lattice G defined by Hibi.

We close with the remark that the sagbi basis property of the coordi-
nate polynomials of the CBN model, which was established in the course
of proving Theorem 10, can be used to express any polynomial in the co-
ordinate subalgebra rapidly in terms of the generators Pg(θ). This process,
which is known as subduction (Sturmfels, 1996, Algorithm 11.1) generalizes
the classical procedure of expressing any symmetric polynomial in terms of
elementary symmetric functions, and it may be of interest to statisticians.
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