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Abstract. Phylogenetic invariants are certain polynomials in the joint probability
distribution of a Markov model on a phylogenetic tree. Such polynomials are of theo-
retical interest in the field of algebraic statistics and they are also of practical interest
— they can be used to construct phylogenetic trees. This paper is a self-contained
introduction to the algebraic, statistical, and computational challenges involved in the
practical use of phylogenetic invariants. We survey the relevant literature, provide some
partial answers and many open problems.
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1. Introduction. The emerging field of algebraic statistics (cf. [37])
has at its core the belief that many statistical problems are inherently al-
gebraic. Statistical problems are often analyzed by specifying a model —
a family of possible probability distributions to explain the data. In par-
ticular, many statistical models are defined parametrically by polynomials
and thus are algebraic varieties. From this point of view, one would hope
that the ideal of polynomials which vanish on a statistical model would give
statistical information about the model. This is not a new idea in statis-
tics, indeed, tests based on polynomials that vanish on a model include the
odds-ratio, which is based on the determinant of a two by two matrix. The
polynomials which vanish on the statistical model have come to be known
as the (algebraic) invariants of the model.

The field of phylogenetics provides important statistical and biological
models with interesting combinatorial structure. The central problem in
phylogenetics is to determine the evolutionary relationship between a set of
taxa (short for taxonomic units, which could be species, for example). To
a first approximation, these relationships can be represented using rooted
binary trees, where the leaves correspond to the observed taxa and the
interior nodes to ancestors. For example, Figure 1 shows the relationships
between a portion of a gene in seven mammalian species.

Phylogenetic invariants are polynomials in the joint probability dis-
tribution on a tree which vanish on distributions arising from the tree.
The first of the invariants for phylogenetic tree models were discovered by
Lake and Cavender-Felsenstein [33, 11]. This set off a flurry of work: in
mathematics, generalizing these invariants (cf. [19, 44, 24]) and in phyloge-
netics, using these invariants to construct trees (cf. [39, 40, 34]). However,
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the linear invariants didn’t fare well in simulations [26] and the idea fell
into disuse. However, the mathematical development has led to renewed
promise about the use of invariants. Recent work [10, 8, 9, 16, 18, 30]
has given cause for optimism in using invariants to construct phylogenetic
trees. There are benefits to these algebraic tools; however, obstacles in
algebraic geometry, statistics, and computer science must be overcome if
they are to live up to their potential. In this paper, we formulate and ana-
lyze some of the fundamental advantages and difficulties in using algebraic
statistics to construct phylogenetic trees, describing the current research
and formulating many open problems.

In algebraic terms, the problem of phylogenetic tree construction can
be stated as follows. We observe DNA sequences from n different species
and wish to determine which binary tree with n leaves best describes the
relationships between these sequences. Each of these trees corresponds to
a different algebraic variety in R

4n

. The DNA sequences correspond to a
certain point in R

4n

as well. Picking the best tree means picking the variety
which is closest to the data point in some sense. Since the data will not
generically lie on the variety of any tree, we have to decide what is meant
by “close”.

Denote the variety (resp. ideal) associated to a tree T by V (T ) (resp.
I(T )). Our main goal, then, is to understand how the polynomials in I(T )
can be used to select the best tree given the data. In order to answer this
question, there are four fundamental obstacles:

1. How do we pick a finite set of polynomials in I(T ) with the most
discriminating power between different trees?

2. Given a set of invariants for each tree, how do we compute a single
score which can be used to compare different trees?

3. Since the varieties live in R
4n

, each polynomial is in exponentially
many unknowns. Thus even evaluating a single invariant could
become difficult as n increases. This is in addition to the problem
that the number of trees and the codimension of V (T ) increase
exponentially. Phylogenetic algorithms are often used for hundreds
of species. Can invariants become practical for large problems?

4. Statistical models are not complex algebraic varieties; they make
sense only in the probability simplex and thus are real, semi-
algebraic sets. This problem is more than theoretical — it is quite
noticeable in simulated data (see Figures 6 and 7). Can semi-
algebraic information be used to augment the invariants?

In the remainder of the paper, we will analyze these problems in detail,
showing why they are significant and explaining some methods for dealing
with them. We begin by introducing phylogenetics and constructing and
using some phylogenetic invariants. Then we deal with the four problems
above in order.

While in this paper we concentrate solely on the problem of construct-
ing phylogenetic trees using invariants, we should note that phylogenetic
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Fig. 1. Phylogenetic tree for seven mammalian species derived from an align-
ment of a portion of the HOXA region (ENCODE region ENm010, see [15] and
genome.ucsc.edu/encode). This tree was built using the dnaml maximum likelihood
package from PHYLIP [22] on an alignment partially shown in Figure 2.

invariants are interesting for many other reasons. On the theoretical side of
phylogenetics, they have been used to answer questions about identifiabil-
ity (e.g., [2]). The study of the algebraic geometry arising from invariants
has led to many interesting problems in mathematics [16, 6, 12].

2. Background. We give here a short, self-contained introduction to
phylogenetics and phylogenetic invariants. For a more thorough survey of
algebraic methods in phylogenetics, see [3]. Also see [21, 41] for more of
the practical and combinatorial aspects of phylogenetics.

Definition 2.1. Let X be a set of taxa. A phylogenetic tree T on X
is a unrooted binary tree with |X| leaves where each leaf is labelled with an
element of X and each edge e of T has a weight, written te and called the
branch length.

While we include branch lengths in our definition of phylogenetic trees,
our discussions about constructing trees are about only choosing the cor-
rect topology, not the branch lengths. While estimating branch lengths is
relatively easy using maximum likelihood methods after a tree topology is
fixed (e.g., with [46]), it is an interesting question whether invariants can
be used to estimate branch lengths.

Phylogenetics depends on having identified homologous characters be-
tween the set of taxa. For example, historically, these characters might be
physical characteristics of the organisms (for example, binary characters
might include the following: are they unicellular or multicellular, cold-
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Human     CCCCGGTGTACTCTAACCACTGAAG-CGGCCGTGTCGGGGACTCACGCGCTTCCCATTCA
Mouse     CCCCGTCGCCT--TGATCATTTAAACGGGCCCTGTAGCAGGCTAGCT---ATCCTATACA
Rat       CCCCGTCACCCCATGATCGTTTAAGCGGGCCCTGTAGCAGTCTAGGT---GTCCTATTCA
Rabbit    ACCTGGCGTGCGGTGACCACTGAAGGGGGCTCTGTCGGGACCTCACTCTCATCCCATACA
Dog       CCTCCAGGCACTCTAACCATTAAGG-GGGCC-TGTCGGGGCCTCAGGCTCTTCCCATTCA
Armadillo CCTCCGTGCTCTCTGACCACTAAGG-GGGCCCTGTCGGGGCCTCAAGCTCTTCCAGTCCA
Elephant  CCCTGGGGCGCTCTGACCACTGAGA--AGCCTCGTCGGGGCTTCAAGCTCTTCCCCTTCA

Human     GCTCTGGATCTGGAACTGGCCCCTTGTCTGAATTCTGCCTCCTCAAAAGTGGCGAA----
Mouse     TTTCTGGGCCTGGAGCTGGCCTCAATTCTTAAGTTTGGCTTCCCAAAG-TGGCTGGTAAA
Rat       TTTCTGGACATGGAGCTGGCCTCAGTTATAAAATTTGGTTTCCCAACG-TGGCTGGTAAA
Rabbit    GCTCTGGACCTGGAGCTGGCCTCATCTCGGAAGTGTAGCCCC------------------
Dog       GCTCGGGACCTGGAGCTG--------------------TCTCCCAAAAGTGGAGGA----
Armadillo GCTGTGGACCTGGAGCGGGCCCCAGCTCTAGATTCTGGTTTCCCAAAG-TGGCAGA----
Elephant  GC-CTGGACCTGCAGCTTGCCCCAGGTCTGGATTCCGGCTCC-CAATG-TGTTCGA----

Human     ----------------CCTGGCCCTATGGCCGTCAGGATCCTCAGAGTGTCAGGAGCC-C
Mouse     AA--------------AGTCATACTAAGGCTGTCAAGATCTTTGGACGGTCCAGAACC-T
Rat       AAAAAAAAAAAGTAGTAGTAGTAGTAAGGCTGTCAAGACCTTCGGAGGGTCCAGAACA-C
Rabbit    ------------------------TAAGACCACCAGAACCCTCCGAGTGTTGCGAACCGC
Dog       ----------------CCTGGCCCTAAGGCCACCAAGACCCTTAGAGTGTCCGAGGTC-C
Armadillo ----------------CCTGGTTCCGAGGCCACCAGGACCCTTAGAGTGATGGGCATC-C
Elephant  ----------------CCCGGTTCCAAGGCCTCCAAGACCCTCAGAATGTCGGGAATC-C

Fig. 2. Multiple sequence alignment of length 180 from the HOXA region of seven
mammalian genomes.

blooded or hot-blooded, egg-laying or placental mammals). In the era of
genomics, the characters are typically single nucleotides or amino acids
that have been determined to be homologous (e.g., the first amino acid
in a certain gene which is shared in a slightly different form among many
organisms). For example, see Figure 2 which shows a multiple sequence
alignment. We will throughout make the typical assumption that charac-
ters evolve independently, so that each column in Figure 2 is an individual
sample from the model of evolution. While both DNA and amino acid
data are common, we will work only with DNA and thus use the alphabet
Σ = {A, C, G, T}.

We assume that evolution happens via a continuous time Markov
process on a phylogenetic tree (see [36] for general details about Markov
chains). That is, along each edge e there is a length te and a rate matrix Qe

giving the instantaneous rates for evolution along edge e. Then Me = eQete

is the transition matrix giving the probabilities of change along the edge.
In order to work with unrooted trees, we will assume that the Markov
process is reversible, that is, πiMe(i, j) = πjMe(j, i), where π is the sta-
tionary distribution of Me. In order for eQete to be stochastic, we must
have Q(i, i) > 0, Q(i, j) ≥ 0 for i 6= j, and

∑

j Q(i, j) = 0 for all i. Notice

that since det(eQ) = etr(Q), we can recover the branch length from the
transition matrix Me as

te =
1

trQe

log det(Me). (2.1)

Example 1. Let Qe =









−1 1
3

1
3

1
3

1
3 −1 1
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1
3

1
3
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3
1
3

1
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be the rate matrix for
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edge e, where the rows and columns are labeled by Σ = {A, C, G, T}. Then

Me = eQete =
1

4
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3
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.

This form of rate matrix is known as the Jukes-Cantor model [29]. For
example, the probability of changing from an A to a C along edge e is given

by Me(1, 2) = 1−e
−

4

3
te

4 .
By choosing special forms of the rate matrices Qe, we can simplify

the problem. Example 1 shows the Jukes-Cantor model [29], where all
mutations happen with the same probability. However, this model is over-
simplistic, there are more realistic models such as the Kimura 3-parameter
model [31] where the rate matrices are of the form









· γ α β
γ · β α
α β · γ
β α γ ·









,

where · = −γ − α− β. See [37, Figure 4.7] for a description of many other
possible models.

In order to obtain the joint distribution of characters at the leaves of
the trees, we have to choose a root of the tree (arbitrarily, since the chains
are time reversible), and run the Markov chain down the edges of the tree.
The result is a joint probability distribution p = (pA...A, . . . , pT...T), and the
important point is that the coordinates of p can be written as polynomials in
the transition probabilities. That is, the model is specified parametrically
by polynomials in the entries of Me. We will forget about the specific
form of the entries of Me = eQete and instead treat each entry of Me as
an unknown. Thus for the Jukes-Cantor model, we have two unknowns

per edge: αe = 1+3e
−

4

3
te

4 and βe = 1−e
−

4

3
te

4 . This makes the algebraic
model more general than the statistical model (as it allows probabilities
in the transition matrices to be negative or even complex). Although this
allows algebraic tools to be used, we will see in Section 7 that it can be
a disadvantage. Notice that for both the Jukes-Cantor and Kimura 3-
parameter models, eQt has the same form as Q. There are two types of
phylogenetic models which have been thoroughly studied from the algebraic
viewpoint: “group based” models such as the Jukes-Cantor and Kimura
models, and the general Markov model, where no constraints are placed on
the transition matrices.

Phylogenetic invariants are simply polynomials in the joint probabil-
ities which vanish if the probabilities come from the model. For example,
for a quartet tree under the Jukes-Cantor model, pAAAA − pCCCC = 0, due
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d01 + d23 ≤ d02 + d13 = d03 + d12

Fig. 3. The four-point condition.

to the symmetry built into the model. However, this polynomial doesn’t
differentiate any tree — it lies in the intersection of the ideals of the three
quartet trees. There are polynomials in the ideals which don’t lie in this
intersection, and we spend the rest of this section deriving a particularly
important polynomial.

Many phylogenetic methods bypass working with the joint probability
distribution and instead only estimate the distances between each pair of
taxa. The goal then is to find a tree with branch lengths such that the
distance along edges of the tree between pairs of leaves approximates the
estimated pairwise distances. To use these distance methods, we first need
a couple of definitions. We will concentrate in this paper on quartet trees,
i.e., trees with four leaves. There are 3 different (unrooted, binary) trees
on four leaves, we will write them (01 : 23), (02 : 13), and (03 : 12),
corresponding to which pairs of leaves are joined together.

Definition 2.2. A dissimilarity map d ∈ R
(n

2) satisfies d(i, j) =
d(j, i) ≥ 0 and d(i, i) = 0. We say that d is a tree metric if there exists a
phylogenetic tree T with non-negative branch lengths te such that for every
pair i, j of taxa, d(i, j) is the sum of the branch lengths te on the edges of
T connecting i and j.

Proposition 2.1 (Four-point condition [7]). A dissimilarity map d
is a tree metric if and only if for every i, j, k, and l, the maximum of the
three numbers

dij + dkl, dik + djl, and dil + djk

is attained at least twice.
Example 2. Let us restrict our attention to a tree with four leaves,

(ij : kl). In this case, the four-point condition becomes (see Figure 3)

dij + dkl ≤ dik + djl = dil + djk. (2.2)

The equality in the four-point condition can be translated into a quadratic
polynomial in the probabilities, however, we first have to understand how to
transform the joint probabilities into distances. Distances can be estimated
from data in a variety of ways (see [21, Chapter 13] and the references
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therein). One choice is the logdet distance, which mimics what we saw
above (2.1), in that a transition matrix is estimated and the distance is
taken to be the log of the determinant of this matrix.

Here we will use a simpler formula for the distance, under the Jukes-
Cantor model (Example 1). The maximum likelihood estimate of the dis-
tance between two sequences under the Jukes-Cantor model is given by

dij = − 1
4 log

(

1 − 4mij

3

)

where mij is the fraction of mismatches between

the two sequences, e.g.,

m12 =
∑

i,j,k,l∈{A,C,G,T},i 6=j

pijkl

After plugging this distance into the four point condition, cancelling,
and exponentiating, the equality in (2.2) becomes

(

1 − 4

3
mik

)(

1 − 4

3
mjl

)

−
(

1 − 4

3
mil

) (

1 − 4

3
mjk

)

= 0. (2.3)

We will call this polynomial the four-point invariant. This construction is
originally due to Felsenstein and Cavender [11].

The four-point invariant is a polynomial in the joint probabilities which
vanishes on distributions arising from a certain quartet tree. Define the
ideal IM(T ) of invariants for a model M of evolution on a tree T to be the
set of all polynomials which are identically zero on all probability distribu-
tions arising from the model M on T . We will write only I(T ) when M is
clear from context.

Example 2 shows one of the first constructions on a phylogenetic in-
variant, in the same year as the discovery by Lake of linear invariants [33].
There is a linear chance of coordinates on the probability distribution p
which makes (2.3) into a binomial. Known as the Hadamard or Fourier
transform [24, 19, 44], this change of coordinates transforms the ideals of
invariants for several models of evolution into toric ideals [43].

3. How to use invariants. The basic idea of using phylogenetic
invariants is as follows. A multiple sequence alignment DNA alignment of
n species gives rise to an empirical probability distribution p̂ ∈ R

4n

. This
occurs simply by counting columns of each possible type in the alignment,
throwing out all columns which contain a gap (a “-” symbol). For example,
Figure 2 has exactly one column which reads “CCCACCC” (the first) out of
107 gap-free columns total, so p̂CCCACCC = 1/107.

Then if f is an invariant for tree T under a certain model of evolution,
we expect f(p̂) ≈ 0 if (and generically only if) the alignment comes from
the model on T . More precisely, where p̂N is the empirical distribution after
seeing N observations from the model on T , then limN→∞ f(p̂N ) → 0.

We thus have a rough outline of how to use phylogenetic invariants to
construct trees:
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1. Choose a model M of evolution.
2. Choose a set of invariants fT for model M for each tree T with n

leaves.
3. Evaluate each set of invariants at p̂.
4. Pick the tree T such that fT (p̂) is smallest (in some sense).

However, all of these steps contain difficulties: there are infinitely many
polynomials to pick in exponentially many unknowns and exponentially
many trees to compare. We will discuss step 2 in Section 4, step 3 in
Section 6, and step 4 in Section 5. Selecting a model of evolution is difficult
as well. There is, as always, a tradeoff between biological realism (which
could lead to hundreds of parameters per edge) and mathematical simplicity
of the model.

Since the rest of this paper will discuss difficulties with using invari-
ants, we should stop and emphasize two especially promising features of
invariants:

1. Invariants allow for arbitrary rate matrices. One major challenge
of phylogenetics is that evolution does not always happen at one rate.
But common methods for constructing trees generally assume a single rate
matrix Q for each edge, leading to difficulties on data with heterogeneous
rates [32]. While methods have been developed to solve this problem (cf.
[47, 23]), it is a major focus of research.

In contrast, phylogenetic invariants allow for arbitrary rate matrices
on every edge. The invariants for the Kimura 3-parameter model [31] have
been shown to outperform neighbor-joining and maximum likelihood on
quartet trees for heterogeneous simulated data [8]. See Problem 8.2.

2. Invariants can test individual features of trees. Researchers are fre-
quently interested in the validity of a single edge in the tree. For example,
we might wonder if human or dog is a closer relative to the rabbit. This
amounts to wondering about how much confidence there is in the edge be-
tween the human-rabbit-mouse-rat subtree and the dog subtree in Figure 1.
There are methods, most notably the bootstrap [20] and Bayesian methods
(cf. [28]), which provide answers to this question, but there are concerns
about their accuracy [25, 14, 35, 1].

As for phylogenetic invariants, the generators of the ideal I(T ) are, in
many cases, built from polynomials constructed from local features of the
tree. Thus invariants seem to be well suited to test individual features of
a tree. For example, suppose we have n taxa. Consider a partition {A,B}
of the taxa into two sets. Construct the |Σ||A| × |Σ||B| matrix FlatA,B(p)
where the rows are indexed by assignments of Σ to the taxa in A and the
columns by assignments of Σ to the taxa in B. The entry of the matrix in
a given row and column is the joint probability of seeing the corresponding
assignment of Σ to A and B. The following theorem is [4, Theorem 4] and
deals with the general Markov model, where there are no conditions on the
form of the rate matrices.

Theorem 3.1 (Allman-Rhodes). Let Σ = {0, 1} and let T be a binary
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tree under the general Markov model. Then the 3× 3 minors of FlatA,B(p)
generate I(T ) for the general Markov model, where we let A,B range over
all partitions of [n] which are induced by removing an edge of T .

While the polynomials in Theorem 3.1 do not generate the ideal for
the DNA alphabet, versions of these polynomials do vanish for any Markov
model on a tree. A similar result also holds for the Jukes-Cantor model in
Fourier coordinates; the following is part of [44, Thm 2].

Theorem 3.2 (Sturmfels-Sullivant). The ideal for the Jukes-Cantor
DNA model is generated by polynomials of degree 1, 2, and 3 where the
quadratic (resp. cubic) invariants are constructed in an explicit combina-
torial manner from the edges (resp. vertices) of the tree.

4. Choosing powerful invariants. There are, of course, infinitely
many polynomials in each ideal I(T ), and it is not clear mathematically or
statistically which should be used in the set fT of invariants that we test.
For example, we might hope to use a generating set, or a Gröbner basis,
or a set that locally defines the variety, or a set that cuts out the variety
over R. We have no actual answers to this dilemma, but we provide a few
illustrative examples and suggest possible criteria for an invariant to be
powerful. We will deal with the Jukes-Cantor model on a tree with four
leaves; the 33 generators for this ideal can be found on the “small trees”
website www.shsu.edu/~ldg005/small-trees/ [10].

We believe that symmetry is an important factor in choosing powerful
invariants. The trees with four leaves have a very large symmetry group:
each tree can be written in the plane in eight different ways (for example,
one tree can be written as (01 : 23), (10 : 23), . . . , (32 : 10)), and each
of these induces a different order on the probability coordinates pijkl. This
symmetry group (Z2 × Z2 × Z2) acts on the ideal I(T ) as well. In order
that the results do not change under different orderings of the input, we
should choose a set fT of invariants which is closed (up to sign) under this
action. After applying this action to the 33 generators, we get a set of 49
invariants. This symmetry will also play an important role in our metric
learning algorithms in Section 5.

We begin by showing how different polynomials have drastically dif-
ferent behavior. Figure 4 shows the distribution of three of the invariants
on data from simulations of 1000 i.i.d. draws from the Jukes-Cantor model
on (01 : 23) for branch lengths ranging from 0.01 to 0.75 (as in [26, 8, 18]).
The histograms show the distributions for the simulated tree in yellow and
the distributions for the other trees in gray and black. The four-point in-
variant (left) distinguishes nicely between the three trees with the correct
tree tightly distributed around zero. It is correct almost all of the time.
Lake’s linear invariant (middle) also shows power to distinguish between
all three trees, but distributions overlap much more — it is only correct
about half of the time. The final polynomial seems to be biased towards
selecting the wrong tree, even though it does not lie in I(T ) for either of
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Four-point Lake’s Biased

Fig. 4. Distributions of three invariants (the four-point invariant, Lake’s linear
invariant, and a biased invariant) on simulated data. The yellow histogram corresponds
to the correct tree, the black and gray are the other two trees. The invariants have quite
different variances and performance.
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Fig. 5. Prediction rate for the 49 Jukes-Cantor invariants on simulated data of
length 100. The four-point invariant is by far the best, although four other invariants
are quite good.

the other two trees.
Figure 5 shows the performance of all the generators for this ideal on

simulated data. The four-point invariant is the best, but the performance
drops sharply with the other generators. Notably, the four-point invariant
and several of the other powerful ones are unchanged (aside from sign)
under the symmetries of the tree. While any invariant can be made sym-
metric by averaging, this behavior leads us to believe that invariants with
a simple, symmetric form may be the best choice.

For more complex models, it becomes even more necessary to pick
a good set of invariants since there prohibatively many generators of the



USING INVARIANTS FOR PHYLOGENETIC TREE CONSTRUCTION 11

ideal. The paper [9] describes an algebraic method for picking a subset of
invariants for the Kimura 3-parameter model, which has 11612 generators
for the quartet tree (after augmenting by symmetry). Their method con-
structs a set of invariants which is a local complete intersection, and shows
that this defines the variety on the biological relevant region. This reduces
the list to 48 invariants which overall behave better than all 11612 invari-
ants. However, of these 48, only 4 of them rank among the top 52 invariants
in prediction rate (using simulations similar to those which produced Fig-
ure 5) and the remaining 44 invariants are mostly quite poor (42% average
accuracy). This result, while of considerable theoretical interest, doesn’t
seem to give an optimal set of invariants.

One unexplored idea comes from the theory of toric ideals. Since a
lattice basis is enough to define a toric variety away from the coordinate
axes, it would be worth exploring whether a particularly nice lattice basis
is helpful, or whether the primary decomposition of lattice basis ideals [13]
can give any information.

5. Comparing trees. Once we have chosen a set fT of invariants for
each tree T , we want to pick the tree such that fT (p̂) is smallest (in some
sense). The examples in Section 4 show why this is a non-trivial problem
— different invariants have different power and different variance and thus
should be weighted differently in choosing a norm on fT . In this section,
we briefly describe an approach to normalizing the invariants to enable us
to choose a tree. It is based on machine learning and was developed in [18].
It leads to large improvements over previous uses of invariants; however, it
is computationally expensive and dependant on the training data. It can
be thought of as finding the best single invariant which is a quadratic form
in the starting set fT of invariants.

There are also standard asymptotic statistical tools such as the delta
method for normalizing invariants to have a common mean and variance.
They have the disadvantage of depending on a linear approximation and
asymptotic behavior, which might not be accurate for small datasets. For-
tunately, the varieties for many phylogenetic models are smooth in the
biologically significant region [9], so linear approximations may work well.

This problem is somewhat easier when we are choosing between dif-
ferent trees with the same topology, for example, the three quartet trees.
In this case the different ideals I(T ) are all isomorphic, and thus we are
comparing the same sets of polynomials (as long as the chosen set fT is
closed under the symmetries of T ). For this reason, we will concentrate
on the case of quartet trees and write T1 = (01 : 23), T2 = (02 : 13), and
T3 = (03 : 12).

Let p̂(θ) be an empirical probability distribution generated from a
phylogenetic model on tree T1 with parameters θ. Choose n invariants
fi ∈ R

n (i = 1, 2, 3) which are closed under symmetry. We want a norm
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‖ ‖∗ such that

‖f1(p̂(θ)))‖∗ < min (‖f2(p̂(θ))‖∗, ‖f3(p̂(θ))‖∗) (5.1)

is typically true, i.e., the true tree should have its associated invariants
closer to zero than others on the relevant range of parameter space.

In order to scale and weigh the individual invariants, the algorithm
seeks to find an optimal ‖ ‖∗ within the class of Mahalanobis norms. Recall
that given a positive (semi)definite matrix A, the Mahalanobis (semi)norm
‖ · ‖A is defined by

‖x‖A =
√

xtAx.

Since A is positive semidefinite, it can be written as A = UDU t where U is
orthogonal and D is diagonal with non-negative entries. Thus the square
root B = U

√
DU t is unique. Now since ‖x‖2

A = xtAx = (Bx)t(Bx) =
‖Bx‖2, learning such a metric is the same as finding a transformation
of the space of invariants that replaces each point x with Bx under the
Euclidean norm, i.e., a rotation and shrinking/stretching of the original x.

Now suppose that Θ is a finite set of parameters from which training
data f1(p̂(θ)), f2(p̂(θ)), f3(p̂(θ)) is generated for θ ∈ Θ. As we saw above,
each of the eight possible ways of writing each tree induces a permuta-
tion of the coordinates pijkl and thus induces a signed permutation of
the coordinates of each fi(p̂(θ)). Write these permutations in matrix form
as π1, . . . , π8. Then the positive semidefinite matrix A must satisfy the
symmetry constraints πiA = Aπi which are hyperplanes intersecting the
semidefinite cone. This symmetry condition is crucial in reducing the com-
putational cost. Given training data, the following optimization problem
finds a good metric on the space of invariants.

Minimize:
∑

θ∈Θ ξ(θ) + λtrA
Subject to: ‖X1(p̂(θ))‖2

A + γ ≤ ‖Xi(p̂(θ))‖2
A + ξ(θ) (for i = 2, 3),

πiA = Aπi (for 1 ≤ i ≤ 8),
ξ(θ) ≥ 0, and
A º 0,

(5.2)
where A º 0 denotes that A is a positive semidefinite matrix, so this is a
semidefinite programming problem. There are several parameters involved
in this algorithm: ξ(θ) for θ ∈ Θ are slack-variables measuring the viola-
tion of (5.1), γ is a margin parameter which lets us strengthen condition
(5.1), and λ is a regularization parameter to keep the trace trA small while
keeping A as low rank as possible. It tries to find a positive semidefinite A
at a trade-off between the small violation of (5.1) and small trace A.

The metric learning problem (5.2) was inspired by some early results
on metric learning algorithms [45, 42], which aim to find a Mahalanobis
(semi)norm such that the mutual distances between similar examples are
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minimized while the distances across dissimilar examples or classes are kept
large. If it becomes too computationally expensive, we can restrict A to be
diagonal, which reduces the problem to a linear program. See [18] for details
and simulation results. The learned metrics significantly improve on any of
the individual invariants as well as on unweighted norms. The semidefinite
programming algorithm is computationally feasible for approximately 100
invariants, and the choice of powerful invariants is important.

6. Efficient computation. At first glance, the problem of using in-
variants seems intractable for large trees for the simple reason that the
number of unknowns grows exponentially with the number of leaves. How-
ever, the problem is not as bad as it may seem. Phylogenetic analyses typ-
ically use DNA sequences at most thousands of bases long, which means
that the empirical distribution p̂ ∈ R

4n

will be extremely sparse even with
a relatively small number of taxa.

Also the data can be sparse, this will not help unless we can write down
the invariants in sparse form. If the polynomials can be written down in
an effective way, they can be evaluated quickly. The determinantal form of
the invariants in Theorem 3.1 provide such a form; see [16] for an algorithm
to construct phylogenetic trees in polynomial time using these invariants
and numerical linear algebra. This suggests that determinantal conditions
would be particularly useful, so we suggest Problem 8.6 to computational
commutative algebraists (see also [17]).

Unfortunately, for many models the polynomials are only sparse when
written in Fourier coordinates, and the Fourier transform takes a sparse
distribution p and produces a completely dense vector q. Many of the
invariants are determinantal in Fourier coordinates, but since the matrices
are dense, they are difficult to write down. Can these polynomials be
evaluated efficiently?

7. Positivity. Recall that the four point condition (Proposition 2.1
and Figure 3) says that for a dissimilarity map d arising from the quartet
tree (01 : 23),

d01 + d23 ≤ d02 + d13 = d03 + d12. (7.1)

This is true since the right two sums traverse the inner edge of the tree
twice (Figure 3). We saw in Example 2 that the equality in (7.1) translates
to a quadratic invariant. However, notice that if the interior branch of the
tree has negative length, the equality is still satisfied, but the inequality
changes so that d01 + d23 is now larger than the other two sums.

The widely used neighbor-joining algorithm [38], when restricted to
four taxa, reduces to finding the smallest of the three sums in the four-point
condition. That is, neighbor-joining on a quartet tree involves estimating
the distances as in Section 2 and then returning the tree (ij : kl) which
minimizes dij +dkl. If instead we used the quadratic invariant arising from
the equality in the four point condition, we would have an invariant based
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Fig. 6. The selection criteria for neighbor-joining (left) and the four-point in-
variant (right) projected to two dimensions. The colored/shaded regions show which
dissimilarity maps are matched to which trees. The white/unshaded area corresponds to
tree (01 : 23), the red/solid area to tree (02 : 13) and the blue/striped area to (03 : 12).

method that simply returns the tree (ij : kl) which minimizes |dik + djl −
dil − djk|. We saw in Section 4 that this invariant performs quite well
compared to the other generators of the Jukes-Cantor model. However, it
has a major disadvantage as compared to the neighbor-joining criteria.

Figure 6 shows the difference between these two selection criteria on

a projection of the six dimensional space of dissimilarity maps R
(4

2) to two
dimensions. The three black lines are the projections of distances arising
from the three different trees. Moving out from the center along these lines
corresponds to increasing the length of the inner edge in the tree.

Geometrically, neighbor-joining can be thought of as finding the clos-
est tree (black half-ray) to a dissimilarity map. The four-point condition
can’t distinguish negative inner branch length (the dotted black line) and
thus is much less robust than neighbor-joining. Notice that even when it
picks the wrong tree, it can pick the wrong wrong tree — that is, the one
least supported by the data. It is less robust than neighbor-joining in the
“Felsenstein zone” [27] which corresponds to the region close to the center,
where the inner edge is very short.

Simulations (see Figure 7) show that building trees by evaluating this
quadratic invariant does not perform nearly as well as neighbor-joining.
This is because many simulations with a short interior branch tend to
return metrics which seem to come from trees with negative inner branch
lengths.

This seems to be a large blow to the method of invariants: even the
most powerful invariant on our list in Section 4 doesn’t behave as well as
this simple condition. However, it can be easily seen that testing the in-
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Fig. 7. Illustration of Figure 6 on simulated data. Simulated alignments from tree
(01 : 23) of length 100 were run for a variety of branch lengths. Distances were estimated
using the Jukes-Cantor model and trees were built using both neighbor-joining and the
four-point invariant. Black circles correspond to distances assigned tree (01 : 23), red
x’s to tree (02 : 13), and blue diamonds to tree (03 : 12).

equality is equivalent to testing the signs of the invariant instead of the
absolute value, which leads us to ask if invariants can provide a way to dis-
cover conditions similar to that used in neighbor-joining (see Problem 8.8).

8. Open problems. Problem 8.1. Can phylogenetic invariants be
used to estimate branch lengths and other parameters in phylogenetic trees?

Problem 8.2. Investigate the behavior of individual invariants on
data from trees with heterogeneous rates. Are the best invariants the same
ones which are powerful for homogeneous rates?

Problem 8.3. Is forming a “nice” lattice basis (for group-based mod-
els) a good criterion for choosing a set of invariants? Does the primary
decomposition of these lattice basis ideals play a role?

Problem 8.4. Can asymptotic statistical methods be practically used
to normalize invariants? Do they give any information about the power of
individual invariants?

Problem 8.5. Do the metrics constructed by the machine learning
algorithm in Section 5 shed any light on the criteria for invariants to be
powerful?

Problem 8.6. Define the “determinantal closure” of an ideal I and
develop algorithms to calculate it. See also [17].

Problem 8.7. Does Fourier analysis provide a method to efficiently
evaluate polynomials in the Fourier coordinates without destroying the spar-
sity of the problem? Note that many of the invariants are determinental in
Fourier coordinates.

Problem 8.8. Are there other phylogenetic invariants (say for quartet
trees under the Jukes-Cantor model) similar to the four-point invariant?
We suggest the following conditions:

1. Be fixed (up to sign) under the Z2 × Z2 × Z2 symmetries of the
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quartet tree.
2. Have the following sign condition: ±f(p) > 0 for all p from T2 and

T3 (with perhaps a different choice of sign for T2 and T3). See for
example, the symmetries of the left subfigure in Figure 4.

Beware that results such as [5] on the uniqueness of the neighbor-joining
criterion place some constraints on whether we can hope to find invariants
mimicking this behavior.
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